Molecular uncovering of important helminth species in wild ruminants in the Czech Republic

. 2025 ; 12 () : 1544270. [epub] 20250204

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39968104

Monitoring gastrointestinal helminth infections in wild ruminants poses significant challenges for managing wildlife health, particularly regarding invasive species. Traditional coprological methods are often limited by their labor-intensive nature and potential for erroneous identification due to morphological similarities among parasite species. This study employed advanced molecular techniques to assess the prevalence and distribution of several helminth taxa, including the invasive nematode Ashworthius sidemi and the trematode Fascioloides magna, in wild ruminant populations in the Czech Republic (CR). A comprehensive and extensive survey on parasite occurrence, unique in its nationwide scope, was conducted on 983 fecal samples collected from red deer (Cervus elaphus), roe deer (Capreolus capreolus), fallow deer (Dama dama), and mouflon (Ovis musimon) across various regions of the CR. The samples were analyzed using multiplex real-time PCR assays specifically designed to detect the DNA of six helminth representatives: the nematodes A. sidemi and Haemonchus spp., as well as the trematodes F. magna, Dicrocoelium dendriticum, Fasciola hepatica, and Calicophoron daubneyi (and representatives of the family Paramphistomidae, respectively). These assays targeted regions of ribosomal DNA (rDNA) and were designed to exhibit high sensitivity and specificity, enabling accurate detection of helminth parasites directly in fecal samples. The molecular assays revealed that invasive nematode A. sidemi was the most prevalent helminth species, detected in 15.8% of all samples (155/983), with the highest infection rate observed in red deer at 30.7% (124/404). Haemonchus spp. were also frequently detected, identified in 14.9% of samples (146/983), particularly in roe deer, with a prevalence of 23.2% (86/371). Spatial analysis of these nematodes across various regions of the CR revealed the extensive distribution of both A. sidemi and Haemonchus spp. in nearly all regions. In contrast, trematode infections were less common, with F. magna and D. dendriticum each found in only 1.5% of samples (15/983). Members of the family Paramphistomidae were detected in 0.2% of the samples (2/983) and were confirmed through sequencing as C. daubneyi. The geographical distribution patterns identified in this study indicate potential hotspots for specific helminth species. These findings are critical for planning health management and conservation strategies to mitigate the impacts of helminth infections, especially in areas affected by invasive species.

Zobrazit více v PubMed

Hegedüšová Vantarová K, Eliáš P, Jr, Jiménez-Ruiz J, Tokarska-Guzik B, Cires E. Biological invasions in the twenty-first century: a global risk. Biologia. (2023) 78:1211–8. doi: 10.1007/s11756-023-01394-7 DOI

Roura-Pascual N, Leung B, Rabitsch W, Rutting L, Vervoort J, Bacher S, et al. . Alternative futures for global biological invasions. Sustain Sci. (2021) 16:1637–50. doi: 10.1007/s11625-021-00963-6 DOI

Hanno S, Tim MB, Ellie ED, Piero G, Philip EH, Jonathan MJ, et al. . No saturation in the accumulation of alien species worldwide. Nat Commun. (2017) 8:14435. doi: 10.1038/ncomms14435, PMID: PubMed DOI PMC

Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, et al. . Scientists' warning on invasive alien species. Biol Rev Camb Philos Soc. (2020) 95:1511–34. doi: 10.1111/brv.12627, PMID: PubMed DOI PMC

Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, et al. . Impacts of biological invasions: what's what and the way forward. Trends Ecol Evol. (2013) 28:58–66. doi: 10.1016/j.tree.2012.07.013, PMID: PubMed DOI

Blackburn TM, Bellard C, Ricciardi A. Alien versus native species as drivers of recent extinctions. Front Ecol Environ. (2019) 17:203–7. doi: 10.1002/fee.2020 DOI

Keller RP, Geist J, Jeschke JM, Kühn I. Invasive species in Europe: ecology, status, and policy. Environ Sci Eur. (2011) 23:23. doi: 10.1186/2190-4715-23-23 DOI

Ahmed DA, Hudgins EJ, Cuthbert RN, Kourantidou M, Diagne C, Haubrock PJ, et al. . Managing biological invasions: the cost of inaction. Biol Invasions. (2022) 24:1927–46. doi: 10.1007/s10530-022-02755-0 DOI

García-Díaz P, Cassey P, Norbury G, Lambin X, Montti L, Pizarro JC, et al. . Management policies for invasive alien species: addressing the impacts rather than the species. Bioscience. (2021) 71:174–85. doi: 10.1093/biosci/biaa139 DOI

Vilcinskas A. Pathogens associated with invasive or introduced insects threaten the health and diversity of native species. Curr Opin Insect Sci. (2019) 33:43–8. doi: 10.1016/j.cois.2019.03.004 PubMed DOI

Lymbery AJ, Morine M, Kanani HG, Beatty SJ, Morgan DL. Co-invaders: the effects of alien parasites on native hosts. Int J Parasitol Parasites Wildl. (2014) 3:171–7. doi: 10.1016/j.ijppaw.2014.04.002, PMID: PubMed DOI PMC

Sarabeev V, Balbuena JA, Desdevises Y, Morand S. Host-parasite relationships in invasive species: macroecological framework. Biol Invasions. (2022) 24:2649–64. doi: 10.1007/s10530-022-02821-7 DOI

Juhásová L, Králová-Hromadová I, Bazsalovicsová E, Minárik G, Štefka J, Mikulíček P, et al. . Population structure and dispersal routes of an invasive parasite, Fascioloides magna, in North America and Europe. Parasit Vectors. (2016) 9:547. doi: 10.1186/s13071-016-1811-z, PMID: PubMed DOI PMC

Demiaszkiewicz A, Kuligowska I, Lachowicz J, Pyziel A, Moskwa B. The first detection of nematodes Ashworthius sidemi in elk Alces alces (L.) in Poland and remarks of ashworthiosis foci limitations. Acta Parasitol. (2013) 58:515–8. doi: 10.2478/s11686-013-0164-4, PMID: PubMed DOI

Dróżdż J, Demiaszkiewicz AW, Lachowicz J. Aswortioza – nowa parazytoza dzikich przeżuwaczy [Ashworthiosis – new parasitosis of wild ruminants]. Med Weter. (2000) 56:32–5.

Kotrlá B, Kotrlý A. The first finding of the nematode Aschworthius sidemi Schulz, 1933 in sika nippon from Czechoslovakia. Folia Parasitol (Praha). (1973) 20:377–8.

Bartoš L. Sika deer in continental Europe In: McCullough DR, Takatsuki S, Kaji K, editors. Sika deer. Tokyo: Springer; (2008). 573–94.

Magdálek J, Bourgoin G, Vadlejch J. Non-native nematode Ashworthius sidemi currently dominates the abomasal parasite community of cervid hosts in the Czech Republic. Front Vet Sci. (2022) 9:862092. doi: 10.3389/fvets.2022.862092, PMID: PubMed DOI PMC

Kuzmina TA, Kharchenko VA, Malega AM. Helminth fauna of roe deer (Capreolus capreolus) in Ukraine: biodiversity and parasite community. Vestn Zool. (2010) 44:e-12–9. doi: 10.2478/v10058-010-0002-1 DOI

Nosal P, Kowal J, Wyrobisz-Papiewska A, Chovancov G. Ashworthius sidemi Schulz, 1933 (Trichostrongylidae: Haemonchinae) in mountain ecosystems - a potential risk for the Tatra chamois Rupicapra rupicapra tatrica (Blahout, 1971/1972). Int J Parasitol Parasites Wildl. (2021) 14:117–20. doi: 10.1016/j.ijppaw.2021.01.010, PMID: PubMed DOI PMC

Demiaszkiewicz AW, Merta D, Kobielski J, Filip KJ, Pyziel AM. Expansion of Ashworthius sidemi in red deer and roe deer from the lower Silesian wilderness and its impact on infection with other gastrointestinal nematodes. Acta Parasitol. (2017) 62:853–7. doi: 10.1515/ap-2017-0103, PMID: PubMed DOI

Pybus MJ. Liver flukes In: Samuel WM, Pybus MJ, Kocan AA, editors. Parasitic diseases of wild mammals. Ames, IA: Iowa State University Press; (2001). 121–49.

Malcicka M. Life history and biology of Fascioloides magna (Trematoda) and its native and exotic hosts. Ecol Evol. (2015) 5:1381–97. doi: 10.1002/ece3.1414, PMID: PubMed DOI PMC

Erhardová-Kotrlá B. The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Prague: Academia; (1971). 155 p.

Leontovyč R, Košťáková M, Siegelová V, Melounová K, Pankrác J, Vrbová K, et al. . Highland cattle and Radix labiata, the hosts of Fascioloides magna. BMC Vet Res. (2014) 10:41. doi: 10.1186/1746-6148-10-41, PMID: PubMed DOI PMC

Novobilský A, Kašný M, Pankrác J, Rondelaud D, Engström A, Höglund J. Lymnaea fuscus (Pfeiffer, 1821) as a potential intermediate host of Fascioloides magna in Europe. Exp Parasitol. (2012) 132:282–6. doi: 10.1016/j.exppara.2012.08.005, PMID: PubMed DOI

Rehbein S, Visser M, Hamel D, Reindl H. Occurrence of the giant liver fluke, Fascioloides magna, in sympatric wild ungulates in one area in the upper Palatinate Forest (northeastern Bavaria, Germany). Parasitol Res. (2021) 120:553–61. doi: 10.1007/s00436-020-06996-7, PMID: PubMed DOI

Kašný M, Beran L, Siegelová V, Siegel T, Leontovyč R, Beránková K, et al. . Geographical distribution of the giant liver fluke (Fascioloides magna) in the Czech Republic and potential risk of its further spread. Vet Med. (2012) 57:101–9. doi: 10.17221/5256-VETMED DOI

Huson KM, Oliver NAM, Robinson MW. Paramphistomosis of ruminants: an emerging parasitic disease in Europe. Trends Parasitol. (2017) 33:836–44. doi: 10.1016/j.pt.2017.07.002, PMID: PubMed DOI

Červená B, Anettová L, Nosková E, Pafčo B, Pšenková I, Javorská K, et al. . The winner takes it all: dominance of Calicophoron daubneyi (Digenea: Paramphistomidae) among flukes in central European beef cattle. Parasitology. (2022) 149:1–10. doi: 10.1017/S0031182021002158, PMID: PubMed DOI

Wiedermann S, Harl J, Fuehrer H-P, Mayr S, Schmid J, Hinney B, et al. . DNA barcoding of rumen flukes (Paramphistomidae) from bovines in Germany and Austria. Parasitol Res. (2021) 120:4061–6. doi: 10.1007/s00436-021-07344-z, PMID: PubMed DOI PMC

Toolan DP, Mitchell G, Searle K, Sheehan M, Skuce PJ, Zadoks RN. Bovine and ovine rumen fluke in Ireland-prevalence, risk factors and species identity based on passive veterinary surveillance and abattoir findings. Vet Parasitol. (2015) 212:168–74. doi: 10.1016/j.vetpar.2015.07.040, PMID: PubMed DOI

Carmen Ferreras M, González-Lanza C, Pérez V, Fuertes M, Benavides J, Mezo M, et al. . Calicophoron daubneyi (Paramphistomidae) in slaughtered cattle in Castilla y Leon (Spain). Vet Parasitol. (2014) 199:268–71. doi: 10.1016/j.vetpar.2013.10.019, PMID: PubMed DOI

Baštýřová Brutovská A, Vogalová P, Rost M, Sak B, Kváč M. Calicophoron daubneyi (Dinnik, 1962) (Digenea) in beef and dairy cattle in the Czech Republic: prevalence and drug efficacy. Folia Parasitol. (2023) 70:001. doi: 10.14411/fp.2023.001, PMID: PubMed DOI

O'Toole A, Browne JA, Hogan S, Bassière T, DeWaal T, Mulcahy G, et al. . Identity of rumen fluke in deer. Parasitol Res. (2014) 113:4097–103. doi: 10.1007/s00436-014-4078-3, PMID: PubMed DOI

Rehbein S, Jůnková Vymyslická P, Peterka T, Strube C, Visser M, Mayr S, et al. . Calicophoron daubneyi (Paramphistomidae) in deer of the Šumava National Park, Czech Republic - consequence of prevalent rumen fluke infection in cattle. Vet Parasitol Reg Stud Rep. (2024) 50:101012. doi: 10.1016/j.vprsr.2024.101012, PMID: PubMed DOI

Brown TL, Morgan ER. Helminth prevalence in European deer with a focus on abomasal nematodes and the influence of livestock pasture contact: a meta-analysis. Pathogens. (2024) 13:378. doi: 10.3390/pathogens13050378, PMID: PubMed DOI PMC

Ahmad N, Khan SA, Majid HA, Ali R, Ullah R, Bari A, et al. . Epidemiology and phylogeny of Haemonchus contortus through internal transcribed spacer 2 gene in small ruminants. Front Vet Sci. (2024) 11:1380203. doi: 10.3389/fvets.2024.1380203, PMID: PubMed DOI PMC

de Almeida BF, Talamini do Amarante AF, Zaneti Lopes WD, Canton C, Alvarez L, Lifschitz A. Anthelmintic resistance of gastrointestinal nematodes in cattle in Brazil and Argentina - current status and global perspectives. Rev Bras Parasitol Vet. (2024) 33:e010524. doi: 10.1590/S1984-29612024041, PMID: PubMed DOI PMC

Vetýška V. Endoparasites of roe deer in the Strakonice region. Acta Vet Brno. (1980) 49:91–103. doi: 10.2754/avb198049010091 DOI

Laca Megyesi S, Königová A, Babják M, Molnár L, Rajský M, Szestáková E, et al. . Wild ruminants as a potential risk factor for transmission of drug resistance in the abomasal nematode Haemonchus contortus. Eur J Wildl Res. (2020) 66:9. doi: 10.1007/s10344-019-1351-x DOI

Beaumelle C, Toïgo C, Papet R, Benabed S, Beurier M, Bordes L, et al. . Cross-transmission of resistant gastrointestinal nematodes between wildlife and transhumant sheep. Peer Community J. (2024) 4:e103. doi: 10.24072/pcjournal.477 DOI

Beesley NJ, Caminade C, Charlier J, Flynn RJ, Hodgkinson JE, Martinez-Moreno A, et al. . Fasciola and fasciolosis in ruminants in Europe: identifying research needs. Transbound Emerg Dis. (2018) 65:199–216. doi: 10.1111/tbed.12682, PMID: PubMed DOI PMC

Rehbein S, Visser M, Jekel I, Silaghi C. Endoparasites of the fallow deer (Dama dama) of the Antheringer au in Salzburg, Austria. Wien Klin Wochenschr. (2014) 126:37–41. doi: 10.1007/s00508-014-0506-8, PMID: PubMed DOI

Tomczuk K, Szczepaniak K, Grzybek M, Studzinska M, Demkowska-Kutrzepa M, Roczen-Karczmarz M, et al. . Internal parasites in roe deer of the Lubartów Forest division in postmortem studies. Med Weter. (2017) 73:726–30. doi: 10.21521/mw.5799 DOI

van Paridon BJ, Gilleard JS, Colwell DD, Goater CP. Life cycle, host utilization, and ecological fitting for invasive lancet liver fluke, Dicrocoelium dendriticum, emerging in southern Alberta, Canada. J Parasitol. (2017) 103:207–12. doi: 10.1645/16-140, PMID: PubMed DOI

Tarry DW. Dicrocoelium dendriticum: the life cycle in Britain. J Helminthol. (1969) 43:403–16. doi: 10.1017/S0022149X00004971 DOI

Iglódyová A, Lazar P, Čurlík J, Karolová R, Ciberej J, Bocková E, et al. . Observations on autochthonous liver flukes in wild ruminants in Slovakia. Helminthologia. (2017) 54:307–13. doi: 10.1515/helm-2017-0035 DOI

Hora FS, Genchi C, Ferrari N, Morariu S, Mederle N, Dărăbuș G. Frequency of gastrointestinal and pulmonary helminth infections in wild deer from western Romania. Vet Parasitol Reg Stud Rep. (2017) 8:75–7. doi: 10.1016/j.vprsr.2016.12.009, PMID: PubMed DOI

Jovanovic NM, Petrović T, Katarina N, Bugarski D, Stanimirovic Z, Rajkovic M, et al. . Endoparasites of red deer (Cervus elaphus L.) and roe deer (Capreolus capreolus L.) in Serbian hunting grounds. Animals. (2024) 14:3120. doi: 10.3390/ani14213120, PMID: PubMed DOI PMC

Kaňuch P, Berggren Å, Cassel-Lundhagen A. A clue to invasion success: genetic diversity quickly rebounds after introduction bottlenecks. Biol Invasions. (2021) 23:1141–56. doi: 10.1007/s10530-020-02426-y DOI

Varzandi AR, Zanet S, Rubele E, Occhibove F, Vada R, Benatti F, et al. . Development of a qPCR duplex assay for simultaneous detection of Fascioloides magna and Galba truncatula in eDNA samples: monitoring beyond boundaries. Sci Total Environ. (2024) 916:170338. doi: 10.1016/j.scitotenv.2024.170338, PMID: PubMed DOI

Sabatini GA, de Almeida BF, Claerebout E, Gianechini LS, Höglund J, Kaplan RM, et al. . Practical guide to the diagnostics of ruminant gastrointestinal nematodes, liver fluke and lungworm infection: interpretation and usability of results. Parasit Vectors. (2023) 16:58. doi: 10.1186/s13071-023-05680-w, PMID: PubMed DOI PMC

van den Berg E, Marais M, Swart A. "Nematode morphology and classification". In: Fourie H, Spaull VW, Jones RK, Daneel MS, Waele D, editors. Nematology in South Africa: a view from the 21st century. Cham: Springer; (2017). p. 33–71.

Kaufmann J. Parasites of cattle. Parasitic infections of domestic animals. Basel: Birkhäuser; (1996). 22–143.

Valero MA, Perez-Crespo I, Periago MV, Khoubbane M, Mas-Coma S. Fluke egg characteristics for the diagnosis of human and animal fascioliasis by Fasciola hepatica and F. gigantica. Acta Trop. (2009) 111:150–9. doi: 10.1016/j.actatropica.2009.04.005, PMID: PubMed DOI

Bogale M, Baniya A, DiGennaro P. Nematode identification techniques and recent advances. Plan Theory. (2020) 9:1260. doi: 10.3390/plants9101260, PMID: PubMed DOI PMC

Reslová N, Škorpíková L, Kyriánová IA, Vadlejch J, Höglund J, Skuce P, et al. . The identification and semi-quantitative assessment of gastrointestinal nematodes in faecal samples using multiplex real-time PCR assays. Parasit Vectors. (2021) 14:391. doi: 10.1186/s13071-021-04882-4, PMID: PubMed DOI PMC

Zavodna M, Sandland GJ, Minchella DJ. Effects of intermediate host genetic background on parasite transmission dynamics: a case study using Schistosoma mansoni. Exp Parasitol. (2008) 120:57–61. doi: 10.1016/j.exppara.2008.04.021, PMID: PubMed DOI PMC

Gasser RB, Chilton NB, Hoste H, Beveridge I. Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Res. (1993) 21:2525–6. doi: 10.1093/nar/21.10.2525, PMID: PubMed DOI PMC

Vrajn TC, Wakarchuk DA, Lévesque AC, Hamilton RI. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol. (1992) 15:563–73.

Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol. (2003) 33:733–55. doi: 10.1016/S0020-7519(03)00049-3, PMID: PubMed DOI

Littlewood DTJ, Olson PD. Small subunit rDNA and the platyhelminthes: signal, noise, conflict and compromise In: Littlewood DTJ, Bray RA, editors. Interrelationships of the Platyhelminthes. London: Taylor & Francis; (2001). 262–78.

Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol. (1992) 54:165–73. doi: 10.1016/0166-6851(92)90109-w, PMID: PubMed DOI

Newton LA, Chilton NB, Beveridge I, Hoste H, Nansen P, Gasser RB. Genetic markers for strongylid nematodes of livestock defined by PCR-based restriction analysis of spacer rDNA. Acta Trop. (1998) 69:1–15. doi: 10.1016/S0001-706x(97)00105-8, PMID: PubMed DOI

Luton K, Walker D, Blair D. Comparisons of ribosomal internal transcribed spacers from two congeneric species of flukes (Platyhelminthes: Trematoda: Digenea). Mol Biochem Parasitol. (1992) 56:323–7. doi: 10.1016/0166-6851(92)90181-I, PMID: PubMed DOI

Anderson GR, Barker SC. Inference of phylogeny and taxonomy within the Didymozoidae (Digenea) from the second internal transcribed spacer (ITS2) of ribosomal DNA. Syst Parasitol. (1998) 41:87–94. doi: 10.1023/A:1006024128098 DOI

Wang J, Cai K, Zhang R, He X, Shen X, Liu J, et al. . Novel one-step single-tube nested quantitative real-time PCR assay for highly sensitive detection of SARS-CoV-2. Anal Chem. (2020) 92:9399–404. doi: 10.1021/acs.analchem.0c01884, PMID: PubMed DOI

Mikel P, Vašíčková P, Tesařík R, Malenovská H, Kulich P, Veselý T, et al. . Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Front Microbiol. (2016) 7:1911. doi: 10.3389/fmicb.2016.01911, PMID: PubMed DOI PMC

Schulz RE. Ashworthius sidemi n. sp. (Nematoda, Trichostrongylidae) aus einem Hirsch (Pseudaxis hortulorum) des fernen Ostens [Ashworthius sidemi n. sp. (Nematoda, Trichostrongylidae) from a deer (Pseudaxis hortulorum) of the Far East]. Z Parasitenkd. (1933) 5:735–9. doi: 10.1007/BF02121369 DOI

Magdálek J, Škorpíková L, McFarland C, Vadlejch J. An alien parasite in a changing world – Ashworthius sidemi has lost its traditional seasonal dynamics. Front Vet Sci. (2023) 10:1279073. doi: 10.3389/fvets.2023.1279073, PMID: PubMed DOI PMC

Škorpíková L, Reslová N, Magdálek J, Vadlejch J, Kašný M. The use of high-resolution melting analysis of ITS-1 for rapid differentiation of parasitic nematodes Haemonchus contortus and Ashworthius sidemi. Sci Rep. (2020) 10:15984. doi: 10.1038/s41598-020-73037-9, PMID: PubMed DOI PMC

Saggiomo L, Esattore B, Bartoš L. Evaluating the management success of an alien species through its hunting bags: the case of the sika deer (Cervus nippon) in the Czech Republic. Acta Univ Agric Silvic Mendelianae Brun. (2021) 69:327–36. doi: 10.11118/actaun.2021.030 DOI

Kowal J, Nosal P, Bonczar Z, Wajdzik M. Parasites of captive fallow deer (Dama dama L.) from southern Poland with special emphasis on Ashworthius sidemi. Ann Parasitol. (2012) 58:23–6. PMID: PubMed

Lehrter V, Jouet D, Liénard E, Decors A, Patrelle C. Ashworthius sidemi Schulz, 1933 and Haemonchus contortus (Rudolphi, 1803) in cervids in France: integrative approach for species identification. Infect Genet Evol. (2016) 46:94–101. doi: 10.1016/j.meegid.2016.10.027 PubMed DOI

Czech Statistical Office . Stavy a odstřel zvěře v honitbách Vysočiny - 2023 [Game populations and hunting in Vysočina hunting grounds - 2023] (2023). Available at: https://csu.gov.cz/vys/stavy-a-odstrel-zvere-v-honitbach-vysociny-2023 (Accessed December 11, 2024).

Vadlejch J, Kyriánová IA, Rylková K, Zikmund M, Langrová I. Health risks associated with wild animal translocation: a case of the European bison and an alien parasite. Biol Invasions. (2017) 19:1121–5. doi: 10.1007/s10530-016-1306-z DOI

Drożdż J, Demiaszkiewicz AW, Lachowicz J. Ashworthius sidemi (Nematoda, Trichostrongylidae): a new parasite of the European bison Bison bonasus [L.] and the question of independence of A. gagarini. Acta Parasitol. (1998) 43:75–80.

Kotrlá B, Kotrlý A. Helminths of wild ruminants introduced into Czechoslovakia. Folia Parasitol (Praha). (1977) 24:35–40. PMID: PubMed

Brown TL, Airs PM, Porter S, Caplat P, Morgan ER. Understanding the role of wild ruminants in anthelmintic resistance in livestock. Biol Lett. (2022) 18:20220057. doi: 10.1098/rsbl.2022.0057, PMID: PubMed DOI PMC

Jones RA, Williams HW, Mitchell S, Robertson S, Macrelli M. Exploration of factors associated with spatial-temporal veterinary surveillance diagnoses of rumen fluke (Calicophoron daubneyi) infections in ruminants using zero-inflated mixed modelling. Parasitology. (2022) 149:253–60. doi: 10.1017/S0031182021001761, PMID: PubMed DOI PMC

Jones RA, Davis CN, Nalepa-Grajcar J, Woodruff H, Williams HW, Brophy PM, et al. . Identification of factors associated with Fasciola hepatica infection risk areas on pastures via an environmental DNA survey of Galba truncatula distribution using droplet digital and quantitative real-time PCR assays. Environ DNA. (2022) 6:e371. doi: 10.1002/edn3.371 DOI

Ekstam B, Johansson B, Dinnétz P, Ellström P. Predicting risk habitats for the transmission of the small liver fluke, Dicrocoelium dendriticum to grazing ruminants. Geospat Health. (2011) 6:125–31. doi: 10.4081/gh.2011.164, PMID: PubMed DOI

Königová A, Burcáková Ľ, Babják M, Dolinská MU, Kostecká Z, Šimková J, et al. . Efficacy of a single-dose albendazole against lancet liver fluke Dicrocoelium dendriticum and liver enzymes activity in naturally infected sheep. Exp Parasitol. (2024) 256:108656. doi: 10.1016/j.exppara.2023.108656 PubMed DOI

Novobilský A, Horáčková E, Hirtová L, Modrý D, Koudela B. The giant liver fluke Fascioloides magna (Bassi 1875) in cervids in the Czech Republic and potential of its spreading to Germany. Parasitol Res. (2007) 100:549–53. doi: 10.1007/s00436-006-0299-4, PMID: PubMed DOI

Filip-Hutsch K, Pyziel-Serafin AM, Hutsch T, Bulak K, Czopowicz M, Merta D, et al. . The occurrence of Fascioloides magna (Bassi, 1875) in the wild cervid population in the lower Silesian wilderness - epidemiological and pathological aspects. J Vet Res. (2022) 66:381–7. doi: 10.2478/jvetres-2022-0042, PMID: PubMed DOI PMC

Konjević D, Bujanić M, Beck A, Beck R, Martinković F, Janicki Z. First record of chronic Fascioloides magna infection in roe deer (Capreolus capreolus). Int J Parasitol Parasites Wildl. (2021) 15:173–6. doi: 10.1016/j.ijppaw.2021.05.006, PMID: PubMed DOI PMC

Halász T, Tari T, Nagy E, Nagy G, Csivincsik Á. Hatchability of Fascioloides magna eggs in cervids. Pathogens. (2023) 12:741. doi: 10.3390/pathogens12050741, PMID: PubMed DOI PMC

Vengust G, Klinkon M, Bidovec A, Vengust A. Fasciola hepatica: effects on blood constituents and liver minerals in fallow deer (Dama dama). Vet Parasitol. (2003) 112:51–61. doi: 10.1016/s0304-4017(02)00413-2, PMID: PubMed DOI

French AS, Zadoks RN, Skuce PJ, Mitchell G, Gordon-Gibbs DK, Taggart MA. Habitat and host factors associated with liver fluke (Fasciola hepatica) diagnoses in wild red deer (Cervus elaphus) in the Scottish highlands. Parasit Vectors. (2019) 12:535. doi: 10.1186/s13071-019-3782-3, PMID: PubMed DOI PMC

Dallas TA, Laine A-L, Ovaskainen O. Detecting parasite associations within multi-species host and parasite communities. Proc Biol Sci. (2019) 286:20191109. doi: 10.1098/rspb.2019.1109, PMID: PubMed DOI PMC

Poulin R, Krasnov BR, Mouillot D, Thieltges DW. The comparative ecology and biogeography of parasites. Philos Trans R Soc Lond Ser B Biol Sci. (2011) 366:2379–90. doi: 10.1098/rstb.2011.0048, PMID: PubMed DOI PMC

Albery GF, Kenyon F, Morris A, Morris S, Nussey DH, Pemberton JM. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa. Parasitology. (2018) 145:1410–20. doi: 10.1017/S0031182018000185, PMID: PubMed DOI PMC

Albery GF, Hasik AZ, Morris S, Morris A, Kenyon F, McBean D, et al. . Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos Trans R Soc Lond Ser B Biol Sci. (2024) 379:20230508. doi: 10.1098/rstb.2023.0508, PMID: PubMed DOI PMC

Konjević D, Janicki Z, Calmels P, Jan DS, Marinculić A, Šimunović M, et al. . Evaluation of factors affecting the efficacy of treatment against Fascioloides magna in wild red deer population. Vet Ital. (2018) 54:33–9. doi: 10.12834/VetIt.970.5051.1, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...