The use of high resolution melting analysis of ITS-1 for rapid differentiation of parasitic nematodes Haemonchus contortus and Ashworthius sidemi
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32994528
PubMed Central
PMC7525508
DOI
10.1038/s41598-020-73037-9
PII: 10.1038/s41598-020-73037-9
Knihovny.cz E-zdroje
- MeSH
- DNA helmintů genetika MeSH
- Haemonchus klasifikace genetika MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- mezerníky ribozomální DNA genetika MeSH
- polymorfismus genetický MeSH
- přežvýkavci parazitologie MeSH
- reprodukovatelnost výsledků MeSH
- Trichostrongyloidea klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA helmintů MeSH
- mezerníky ribozomální DNA MeSH
Among gastrointestinal nematodes, haematophagous strongylids Haemonchus contortus and Ashworthius sidemi belong to the most pathogenic parasites of both domestic and wild ruminants. Correct identification of parasitic taxa is of crucial importance in many areas of parasite research, including monitoring of occurrence, epidemiological studies, or testing of effectiveness of therapy. In this study, we identified H. contortus and A. sidemi in a broad range of ruminant hosts that occur in the Czech Republic using morphological/morphometric and molecular approaches. As an advanced molecular method, we employed qPCR followed by High Resolution Melting analysis, specifically targeting the internal transcribed spacer 1 (ITS-1) sequence to distinguish the two nematode species. We demonstrate that High Resolution Melting curves allow for taxonomic affiliation, making it a convenient, rapid, and reliable identification tool.
Zobrazit více v PubMed
Charlier J, et al. Econohealth: Placing helminth infections of livestock in an economic and social context. Vet. Parasitol. 2015;212:62–67. PubMed
Gunn A, Irvine RJ. Subclinical parasitism and ruminant foraging strategies—A review. Wildl. Soc. Bull. 2003;31:117–126.
Mavrot F, Hertzberg H, Torgerson P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasites Vectors. 2015;8:557. PubMed PMC
Stien A, et al. The impact of gastrointestinal nematodes on wild reindeer: Experimental and cross-sectional studies. J. Anim. Ecol. 2002;71:937–945.
O'Connor LJ, Kahn LP, Walkden-Brown SW. Moisture requirements for the free-living development of Haemonchus contortus: Quantitative and temporal effects under conditions of low evaporation. Vet. Parasitol. 2007;150:128–138. PubMed
Rinaldi L, et al. Haemonchus contortus: spatial risk distribution for infection in sheep in Europe. Geospat. Health. 2015;9:325–331. PubMed
Whitley NC, et al. Impact of integrated gastrointestinal nematode management training for US goat and sheep producers. Vet. Parasitol. 2014;200:271–275. PubMed
Angulo-Cubillan FJ, Garcia-Coiradas L, Alunda JM, Cuquerella M, de la Fuente C. Biological characterization and pathogenicity of three Haemonchus contortus isolates in primary infections in lambs. Vet. Parasitol. 2010;171:99–105. PubMed
Rowe JB, Nolan JV, Dechaneet G, Teleni E, Holmes PH. The effect of haemonchosis and blood-loss into the abomasum on digestion in sheep. Br. J. Nutr. 1988;59:125–139. PubMed
Doyle SR, et al. Population genomic and evolutionary modelling analyses reveal a single major QTL for ivermectin drug resistance in the pathogenic nematode, Haemonchus contortus. BMC Genomics. 2019;20:218. PubMed PMC
Mohammedsalih KM, et al. New codon 198 beta-tubulin polymorphisms in highly benzimidazole resistant Haemonchus contortus from goats in three different states in Sudan. Parasites Vectors. 2020;13:1–5. PubMed PMC
Riou M, et al. Effects of cholesterol content on activity of P-glycoproteins and membrane physical state, and consequences for anthelmintic resistance in the nematode Haemonchus contortus. Parasite. 2020;27:13. PubMed PMC
Drozdz J. Materials contributing to the knowledge of the helminth fauna of Cervus (Russa) unicolor Kerr and Muntjacus muntjak Zimm. of Vietnam, including two new nematode species: Oesophagostomum labiatum sp. n., and Trichocephalus muntjaci sp. n. Acta Parasitol. 1973;33:465–474.
Kotrla B, Kotrly A. The first finding of the nematode Aschworthius sidemi Schulz, 1933 in Sika nippon from Czechoslovakia. Folia Parasitol. 1973;20:377–378.
Kotrla B, Kotrly A. Helminths of wild ruminants introduced into Czechoslovakia. Folia Parasitol. 1977;24:35–40. PubMed
Schulz RE. Ashwoethius sidemi n. sp. (Nematoda, Trichostrongylidae) aus einem Hirsch (Pseudaxis hortulorum) des fernen Ostens. Zschr. Parasitenk. 1933;5:735–739.
Demiaszkiewicz AW, Merta D, Kobielski J, Filip KJ. A further increase in the prevalence and intensity of infection with Ashworthius sidemi nematodes in red deer in the Lower Silesian Wilderness. Ann. Parasitol. 2018;64:189–192. PubMed
Kuzmina TA, Kharchenko VA, Malega AM. Helminth fauna of roe deer (Capreolus Capreolus) in Ukraine: Biodiversity and parasite community. Vestn. Zool. 2010;44:15–22.
Kuznetsov D, Romashova N, Romashov B. The first detection of Ashworthius sidemi (Nematoda, Trichostrongylidae) in roe deer (Capreolus capreolus) in Russia. Vet. Parasitol. Reg. Stud. Rep. 2018;14:200–203. PubMed
Vadlejch J, Kyrianova IA, Rylkova K, Zikmund M, Langrova I. Health risks associated with wild animal translocation: A case of the European bison and an alien parasite. Biol. Invasions. 2017;19:1121–1125.
Demiaszkiewicz AW, Lachowicz J, Osinska B. Ashworthius sidemi (Nematoda, Trichostrongylidae) in wild ruminants in Bialowieza Forest. Pol. J. Vet. Sci. 2009;12:385–388. PubMed
Osinska B, Demiaszkiewicz AW, Lachowicz J. Pathological lesions in European bison (Bison bonasus) with infestation by Ashworthius sidemi (Nematoda, Trichostrongylidae) Pol. J. Vet. Sci. 2010;13:63–67. PubMed
Drozdz J, Demiaszkiewicz AW, Lachowicz J. Expansion of the Asiatic parasite Ashworthius sidemi (Nematoda, Trichostrongylidae) in wild ruminants in Polish territory. Parasitol. Res. 2003;89:94–97. PubMed
Kotrla B, Kotrly A, Kozdon O. Studies on the specifity of the nematode Ashworthius sidemi Schulz, 1933. Acta Vet. Brno. 1976;45:123–126.
Moskwa B, et al. The first identification of a blood-sucking abomasal nematode Ashworthius sidemi in cattle (Bos taurus) using simple polymerase chain reaction (PCR) Vet. Parasitol. 2015;211:106–109. PubMed
Lichtenfels JR, Pilitt PA, Hoberg EP. New morphological characters for identifying individual specimens of Haemonchus spp. (Nematoda: Trichostrongyloidea) and a key to species in ruminants of North America. J. Parasitol. 1994;80:107–119. PubMed
Pike AW. A revision of the genus Ashworthius Le Roux, 1930 (Nematoda: Trichostrongylidae) J. Helminthol. 1969;43:135–144. PubMed
Baltrisis P, Halvarsson P, Hoglund J. Molecular detection of two major gastrointestinal parasite genera in cattle using a novel droplet digital PCR approach. Parasitol. Res. 2019;118:2901–2907. PubMed PMC
Said Y, Gharbi M, Mhadhbi M, Dhibi M, Lahmar S. Molecular identification of parasitic nematodes (Nematoda: Strongylida) in feces of wild ruminants from Tunisia. Parasitology. 2018;145:901–911. PubMed
Santos LL, et al. Molecular method for the semiquantitative identification of gastrointestinal nematodes in domestic ruminants. Parasitol. Res. 2020;119:529–543. PubMed
Ababneh M, Ababneh O, Al-Zghoul MB. High-resolution melting curve analysis for infectious bronchitis virus strain differentiation. Vet. World. 2020;13:400–406. PubMed PMC
Dehbashi S, Tahmasebi H, Sedighi P, Davarian F, Arabestani MR. Development of high-resolution melting curve analysis in rapid detection of vanA gene, Enterococcus faecalis, and Enterococcus faecium from clinical isolates. Trop. Med. Health. 2020;48:1–2. PubMed PMC
Wang C, et al. Rapid screening of MMACHC gene mutations by high-resolution melting curve analysis. Mol. Genet. Genomic Med. 2020;6:e1221. PubMed PMC
Arbabi M, Hooshyar H, Lotfinia M, Bakhshi MA. Molecular detection of Trichostrongylus species through PCR followed by high resolution melt analysis of ITS-2 rDNA sequences. Mol. Biochem. Parasitol. 2020;236:111260. PubMed
Filipiak A, Hasiow-Jaroszewska B. The use of real-time polymerase chain reaction with high resolution melting (real-time PCR-HRM) analysis for the detection and discrimination of nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. Mol. Cell. Probes. 2016;30:113–117. PubMed
Reslova N, Skorpikova L, Slany M, Pozio E, Kasny M. Fast and reliable differentiation of eight Trichinella species using a high resolution melting assay. Sci. Rep. 2017;7:16210. PubMed PMC
Irvine RJ, Corbishley H, Pilkington JG, Albon SD. Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (Cervus elaphus) Parasitology. 2006;133:465–475. PubMed
Kemper KE, et al. Reduction of faecal worm egg count, worm numbers and worm fecundity in sheep selected for worm resistance following artificial infection with Teladorsagia circumcincta and Trichostrongylus colubriformis. Vet. Parasitol. 2010;171:238–246. PubMed
van Wyk, J. A. & Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res.80, 539 (2013). PubMed
Lehrter V, Jouet D, Lienard E, Decors A, Patrelle C. Ashworthius sidemi Schulz, 1933 and Haemonchus contortus (Rudolphi, 1803) in cervids in France: Integrative approach for species identification. Infect. Genet. Evol. 2016;46:94–101. PubMed
Moskwa B, Bien J, Gozdzik K, Cabaj W. The usefulness of DNA derived from third stage larvae in the detection of Ashworthius sidemiinfection in European bison, by a simple polymerase chain reaction. Parasites Vectors. 2014;7:1–5. PubMed PMC
Nabavi R, et al. Comparison of internal transcribed spacers and intergenic spacer regions of five common Iranian sheep bursate nematodes. Iran. J. Parasitol. 2014;9:350–357. PubMed PMC
Otranto D, et al. Differentiation among three species of bovine Thelazia (Nematoda: Thelaziidae) by polymerase chain reaction-restriction fragment length polymorphism of the first internal transcribed spacer ITS-1 (rDNA) Int. J. Parasitol. 2001;31:1693–1698. PubMed
Zarlenga DS, Gasbarre LC, Boyd P, Leighton E, Lichtenfels JR. Identification and semi-quantitation of Ostertagia ostertagi eggs by enzymatic amplification of ITS-1 sequences. Vet. Parasitol. 1998;77:245–257. PubMed
Hoberg, E. P. & Zarlenga, D. S. Evolution and biogeography of Haemonchus contortus: linking faunal dynamics in space and time. In Haemonchus Contortus and Haemonchosis - Past, Present and Future Trends Vol. 93, 1–30 (2016) PubMed
Magdalek, J., Kyrianova, I. A. & Vadlejch, J. Ashworthius sidemiin wild cervids in the Czech Republic. In 9th Workshop on biodiversity 66–71 (Česká zemědělská univerzita v Praze, Praha, 2017). https://www.researchgate.net/publication/328902164 Accessed 29 July 2020.
Hansen, J. & Perry, B. The epidemiology, diagnosis and control of helminth parasites of ruminants. In FAO Animal Health Manual, 67–82 (1994).
Wood IB, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine) Vet. Parasitol. 1995;58:181–213. PubMed
Zavodna M, Sandland GJ, Minchella DJ. Effects of intermediate host genetic background on parasite transmission dynamics: A case study using Schistosoma mansoni. Exp. Parasitol. 2008;120:57–61. PubMed PMC
Palais R, Wittwer CT. Mathematical algorithms for high-resolution DNA melting analysis. Methods Enzymol. 2009;454:323–343. PubMed
Molecular uncovering of important helminth species in wild ruminants in the Czech Republic