An alien parasite in a changing world - Ashworthius sidemi has lost its traditional seasonal dynamics

. 2023 ; 10 () : 1279073. [epub] 20231101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38026660

A non-native nematode Ashworthius sidemi has emerged in captive fallow deer in Central and Eastern Europe over the last decade. Although this parasite has been spreading in the wild outside it's native distributional range and colonising local European host species since the middle of the last century, limited information has been published on the seasonality of A. sidemi and its susceptibility to anthelmintics. To address this knowledge gap, we conducted a study to investigate seasonal dynamics of the non-native parasite in the current Central European climate conditions. We collected freshly voided faecal pellets at four-week intervals from February 2018 to February 2020 at a fallow deer reserve with a known history of A. sidemi presence. The faecal pellets obtained were pooled after each site visit (n = 25) and coprocultured to obtain the third stage larvae of trichostrongylid nematodes at monthly intervals. Total genomic DNA was extracted from the recovered larvae. Using real-time multiplex PCR, A. sidemi DNA was detected in 17 out of 25 larval samples (68% prevalence). During the monitoring period, the annual administration of ivermectin based premix (Cermix) took place in January 2018, 2019, and 2020, and additionally a mixture of rafoxanide and mebendazole (Rafendazol) was administered once in spring 2019. The probability of parasite presence was significantly influenced by the time since the drug administration (p = 0.048) and the mean temperature at the location (p = 0.013). Larval samples negative for A. sidemi were always identified shortly after the drug administration. However, rapid pasture contamination by the parasite eggs from two to three months after Cermix administration and within one month after Rafendazol administration suggest only a short-lived efficacy of both administered drugs. The abundance of A. sidemi DNA was positively affected by mean temperature (p = 0.044) and remained relatively stable throughout the monitoring period, with the highest peak in August 2018 and 2019. Pasture contamination with A. sidemi eggs occurred almost all year round, with the exception of the beginning of 2018, 2019, and 2020. These findings indicate adaptation of a non-native parasite to the current climatic conditions of the Czech Republic resulted in negligible seasonal patterns of parasite egg shedding.

Zobrazit více v PubMed

Esattore B, Saggiomo L, Sensi M, Francia V, Cherin M. Tell me what you eat and I’ll tell you…where you live: an updated review of the worldwide distribution and foraging ecology of the fallow deer (Dama dama). Mamm Biol. (2022) 102:321–38. doi: 10.1007/s42991-022-00250-6 DOI

Kudrnáčová E, Bartoň L, Bureš D, Hoffman LC. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): a review. Meat Sci. (2018) 141:9–27. doi: 10.1016/j.meatsci.2018.02.020, PMID: PubMed DOI

Bartoš L, Kotrba R, Pintíř J. Ungulates and their management in the Czech Republic In: Appolonio M, Andersen R, Putman R, editors. European ungulates and their management in the 21st century. Cambridge: Cambridge University Press; (2010)

Gunn A, Irvine R. Subclinical parasitism and ruminant foraging strategies – a review. Wildl Soc Bull. (2003) 31:117–26. doi: 10.2307/3784365 DOI

Dróżdż J, Malczewski A, Demiaszkiewicz A, Lachowicz J. The helminthofauna of farmed deer (Cervidae) in Poland. Acta Parasitol. (1997) 42:225–9.

Santín-Durán M, Alunda JM, Hoberg EP, De La Fuente C. Abomasal parasites in wild sympatric cervids, red deer, Cervus elaphus and fallow deer, Dama dama, from three localities across central and Western Spain: relationship to host density and park management. J Parasitol. (2004) 90:1378–86. doi: 10.1645/GE-3376 PubMed DOI

Rehbein S, Visser M, Jekel I, Silaghi C. Endoparasites of the fallow deer (Dama dama) of the Antheringer au in Salzburg, Austria. Wien Klin Wochenschr. (2014) 126:37–41. doi: 10.1007/s00508-014-0506-8, PMID: PubMed DOI

Kowal J, Nosal P, Bonczar Z, Wajdzik M. Parasites of captive fallow deer (Dama dama L.) from southern Poland with special emphasis on Ashworthius sidemi. Ann Parasitol. (2012) 58:23–6. PubMed

Kuznetsov D. The first detection of Abomasal nematode Ashworthius sidemi in fallow deer (Dama dama) in Russia. Acta Parasitol. (2022) 67:560–3. doi: 10.1007/s11686-021-00452-x, PMID: PubMed DOI

Ferté H, Cléva D, Depaquit J, Gobert S, Léger N. Status and origin of Haemonchinae (Nematoda: Trichostrongylidae) in deer: a survey conducted in France from 1985 to 1998. Parasitol Res. (2000) 86:582–7. doi: 10.1007/PL00008534 PubMed DOI

Dróżdż J, Demiaszkiewicz A, Lachowicz J. Expansion of the Asiatic parasite Ashworthius sidemi (Nematoda, Trichostrongylidae) in wild ruminants in polish territory. Parasitol Res. (2003) 89:94–7. doi: 10.1007/s00436-002-0675-7, PMID: PubMed DOI

Kuzmina T, Kharchenko V, Malega A. Helminth fauna of roe deer (Capreolus Capreolus) in Ukraine: biodiversity and parasite community. Vestn Zool. (2010) 44:e-12–9. doi: 10.2478/v10058-010-0002-1 DOI

Kotrlá B, Kotrlý A. Helminths of wild ruminants introduced into Czechoslovakia. Folia Parasitol (Praha). (1977) 24:35–40. PMID: PubMed

Demiaszkiewicz AW, Merta D, Kobielski J, Filip KJ, Pyziel AM. Expansion of Ashworthius sidemi in red deer and roe deer from the lower Silesian wilderness and its impact on infection with other gastrointestinal nematodes. Acta Parasitol. (2017) 62:853–7. doi: 10.1515/ap-2017-0103, PMID: PubMed DOI

Vadlejch J, Kyriánová IA, Rylková K, Zikmund M, Langrová I. Health risks associated with wild animal translocation: a case of the European bison and an alien parasite. Biol Invasions. (2017) 19:1121–5. doi: 10.1007/s10530-016-1306-z DOI

Belem AM, Couvillion CE, Siefker C, Griffin RN. Evidence for arrested development of abomasal nematodes in white-tailed deer. J Wildl Dis. (1993) 29:261–5. doi: 10.7589/0090-3558-29.2.261 PubMed DOI

O’Connor LJ, Walkden-Brown SW, Kahn LP. Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet Parasitol. (2006) 142:1–15. doi: 10.1016/j.vetpar.2006.08.035, PMID: PubMed DOI

Armour J. The epidemiology of helminth disease in farm animals. Vet Parasitol (1980) 6:7–46. doi: https://doi.org/10.1016/0304-4017(80)90037-0 DOI

Charlier J, Höglund J, Morgan ER, Geldhof P, Vercruysse J, Claerebout E. Biology and epidemiology of gastrointestinal nematodes in cattle. Vet Clin North Am Food Anim Pract. (2020) 36:1–15. doi: 10.1016/j.cvfa.2019.11.001, PMID: PubMed DOI

Ovcharenko DA. Seasonal dynamics and development of Ashworthius sidemi (Trichostrongylidae), Oesophagostomum radiatum and O. Venulosum (Strongylidae) of Cervus nippon hortulorum. Parazitologiya. (1968) 2:470–4.

Magdálek J, Bourgoin G, Vadlejch J. Non-native nematode Ashworthius sidemi currently dominates the Abomasal parasite Community of Cervid Hosts in the Czech Republic. Front Vet Sci. (2022) 9:862092. doi: 10.3389/fvets.2022.862092, PMID: PubMed DOI PMC

McMahon C, Gordon AW, Edgar HWJ, Hanna REB, Brennan GP, Fairweather I. The effects of climate change on ovine parasitic gastroenteritis determined using veterinary surveillance and meteorological data for Northern Ireland over the period 1999-2009. Vet Parasitol. (2012) 190:167–77. doi: 10.1016/j.vetpar.2012.06.016, PMID: PubMed DOI

Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. (2013) 341:514–9. doi: 10.1126/science.1239401 PubMed DOI

Pilarczyk B, Tomza-Marciniak A, Udała J, Kuba J. The prevalence and control of gastrointestinal nematodes in farmed fallow deer (Dama dama L.). Vet Arh. (2015) 85:415–23. doi: 10.13140/RG.2.1.2340.5922 DOI

Chambers A, Candy P, Green P, Sauermann C, Leathwick D. Seasonal output of gastrointestinal nematode eggs and lungworm larvae in farmed wapiti and red deer of New Zealand. Vet Parasitol. (2022) 303:109660. doi: 10.1016/j.vetpar.2022.109660, PMID: PubMed DOI

Pedersen AB, Fenton A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol. (2015) 31:200–11. doi: 10.1016/j.pt.2015.02.004, PMID: PubMed DOI

Chroust K, Vitula F. Anthelmintic efficacy of Cermix premix of the nematodes in game animals. Veterinarstvi. (2005) 55:707–13.

Lamka J, Simon I, Čapková J, Vysloužil L. Efficacy of two- and four-day treatments with Rafendazol premix Spofa in game animals. Veterinarstvi. (1990) 40:501–2.

Lamka J, Peška R, Kulichová E, Urešová J, Vondřejc M. Anthelmintic efficacy of orally administered ivermectin against nematodes in the moufflon (Ovis musimon). Acta Vet Brno. (1996) 65:225–8. doi: 10.2754/avb199665030225 DOI

Lichtenfels JR, Hoberg EP, Zarlenga DS. Systematics of gastrointestinal nematodes of domestic ruminants: advances between 1992 and 1995 and proposals for future research. Vet Parasitol. (1997) 72:225–45. doi: 10.1016/S0304-4017(97)00099-X PubMed DOI

Moskwa B, Bień J, Goździk K, Cabaj W. The usefulness of DNA derived from third stage larvae in the detection of Ashworthius sidemi infection in European bison, by a simple polymerase chain reaction. Parasit Vectors. (2014) 7:215–5. doi: 10.1186/1756-3305-7-215 PubMed DOI PMC

Reslová N, Škorpíková L, Kyriánová IA, Vadlejch J, Höglund J, Skuce P, et al. . The identification and semi-quantitative assessment of gastrointestinal nematodes in faecal samples using multiplex real-time PCR assays. Parasit Vectors. (2021) 14:391. doi: 10.1186/s13071-021-04882-4, PMID: PubMed DOI PMC

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. (2018) 5:180214. doi: 10.1038/sdata.2018.214 PubMed DOI PMC

Ahrens CD. Meteorology today: An introduction to weather, climate, and the environment. Belmont, CA: Cengage Learning Canada Inc; (2015).

Jørgen H, Perry BD, Brian D. The epidemiology, diagnosis, and control of helminth parasites of ruminants: A handbook. Nairobi: International Laboratory for Research on Animal Diseases; (1994).

Mikel P, Vašíčková P, Tesačík R, Malenovská H, Kulich P, Veselý T, et al. . Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Front Microbiol. (2016) 7:1911. doi: 10.3389/fmicb.2016.01911, PMID: PubMed DOI PMC

R Core Team . R: a language and environment for statistical computing. (2022) Available at: https://www.r-project.org/

Wickham Hadley. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York (2016). Available at: https://ggplot2.tidyverse.org

Dróżdż J, Lachowics J, Demiaszkiewicz A. Seasonal changes in the helminth fauna of Cervus elaphus (L.) from Słowiński National Park (Poland). Acta Parasitol. (1993) 38:85–7.

Albery GF, Kenyon F, Morris A, Morris S, Nussey DH, Pemberton JM. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa. Parasitology. (2018) 145:1410–20. doi: 10.1017/S0031182018000185, PMID: PubMed DOI PMC

Kołodziej-Sobocińska M, Pyziel AM, Demiaszkiewicz AW, Borowik T, Kowalczyk R. Pattern of parasite egg shedding by European bison (Bison bonasus) in the Białowieża primeval Forest, Poland. Mamm Res. (2016) 61:179–86. doi: 10.1007/s13364-016-0270-4 DOI

Borkovcová M, Langrová I, Totková A. Endoparasitoses of fallow deer (Dama dama) in game-park in South Moravia (Czech Republic). Helminthologia. (2013) 50:15–9. doi: 10.2478/s11687-013-0102-x DOI

Coop RL, Kyriazakis I. Nutrition–parasite interaction. Vet Parasitol. (1999) 84:187–204. doi: 10.1016/S0304-4017(99)00070-9, PMID: PubMed DOI

Crofton HD. Nematode parasite populations in sheep on lowland farms V. Further observations on the post-parturient rise and a discussion of its significance. Parasitology. (1958) 48:243–50. doi: 10.1017/S0031182000021211, PMID: PubMed DOI

Hayward AD, Pilkington JG, Wilson K, McNeilly TN, Watt KA. Reproductive effort influences intra-seasonal variation in parasite-specific antibody responses in wild Soay sheep. Funct Ecol. (2019) 33:1307–20. doi: 10.1111/1365-2435.13330 DOI

Hamer K, McIntyre J, Morrison AA, Jennings A, Kelly RF, Leeson S, et al. . The dynamics of ovine gastrointestinal nematode infections within ewe and lamb cohorts on three Scottish sheep farms. Prev Vet Med. (2019) 171:104752. doi: 10.1016/j.prevetmed.2019.104752, PMID: PubMed DOI

Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, et al. . Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol. (2002) 22:1441–53. doi: 10.1002/joc.773 DOI

Molnár PK, Kutz SJ, Hoar BM, Dobson AP. Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol Lett. (2013) 16:9–21. doi: 10.1111/ele.12022, PMID: PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular uncovering of important helminth species in wild ruminants in the Czech Republic

. 2025 ; 12 () : 1544270. [epub] 20250204

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...