Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22247428
PubMed Central
PMC3318450
DOI
10.1093/gbe/evs007
PII: evs007
Knihovny.cz E-zdroje
- MeSH
- Chlorophyta genetika MeSH
- molekulární evoluce * MeSH
- telomery genetika MeSH
- Volvocida genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres, which form the protective ends of eukaryotic chromosomes, are a ubiquitous and conserved structure of eukaryotic genomes but the basic structural unit of most telomeres, a repeated minisatellite motif with the general consensus sequence T(n)A(m)G(o), may vary between eukaryotic groups. Previous studies on several species of green algae revealed that this group exhibits at least two types of telomeric sequences, a presumably ancestral type shared with land plants (Arabidopsis type, TTTAGGG) and conserved in, for example, Ostreococcus and Chlorella species, and a novel type (Chlamydomonas type, TTTTAGGG) identified in Chlamydomonas reinhardtii. We have employed several methodical approaches to survey the diversity of telomeric sequences in a phylogenetically wide array of green algal species, focusing on the order Chlamydomonadales. Our results support the view that the Arabidopsis-type telomeric sequence is ancestral for green algae and has been conserved in most lineages, including Mamiellophyceae, Chlorodendrophyceae, Trebouxiophyceae, Sphaeropleales, and most Chlamydomonadales. However, within the Chlamydomonadales, at least two independent evolutionary changes to the Chlamydomonas type occurred, specifically in a subgroup of the Reinhardtinia clade (including C. reinhardtii and Volvox carteri) and in the Chloromonadinia clade. Furthermore, a complex structure of telomeric repeats, including a mix of the ancestral Arabidopsis-type motifs and derived motifs identical to the human-type telomeric repeats (TTAGGG), was found in the chlamydomonadalean clades Dunaliellinia and Stephanosphaeria. Our results indicate that telomere evolution in green algae, particularly in the order Chlamydomonadales, is far more dynamic and complex than thought before. General implications of our findings for the mode of telomere evolution are discussed.
Zobrazit více v PubMed
Armbrust EV, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86. PubMed
Biessmann H, Mason JM. Telomerase-independent mechanisms of telomere elongation. Cell Mol Life Sci. 2003;60:2325–2333. PubMed PMC
Blanc G, et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell. 2010;22:2943–2955. PubMed PMC
Bowler C, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–244. PubMed
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. PubMed
Cock JM, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010;465:617–621. PubMed
Coleman AW, Mai JC. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol. 1997;45:168–177. PubMed
Collard BCY, Das A, Virk PS, Mackill DJ. Evaluation of “quick” and “dirty” DNA extraction methods for marker-assisted selection in rice (Oryza sativa L.) Plant Breed. 2007;126:47–50.
Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Mol Biol Rep. 1983;1:19–21.
Derelle E, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A. 2006;103:11647–11652. PubMed PMC
Fajkus J, et al. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol Gen Genet. 1998;260:470–474. PubMed
Fajkus J, Sykorova E, Leitch AR. Telomeres in evolution and evolution of telomeres. Chromosome Res. 2005;13:469–479. PubMed
Fitzgerald MS, McKnight TD, Shippen DE. Characterization and developmental patterns of telomerase expression in plants. Proc Natl Acad Sci U S A. 1996;93:14422–14427. PubMed PMC
Fojtova M, Fulneckova J, Fajkus J, Kovarik A. Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity. J Exp Bot. 2002;53:2151–2158. PubMed
Fojtova M, et al. Telomere maintenance in liquid crystalline chromosomes of dinoflagellates. Chromosoma. 2010;119:485–493. PubMed
Frydrychova R, et al. Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome. 2004;47:163–178. PubMed
Frydrychova R, Marec F. Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera) Genetica. 2002;115:179–187. PubMed
Fuchs J, Brandes A, Schubert I. Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol. 1995;196:227–241.
Fuchs J, Schubert I. Arabidopsis-type telomere sequences on chromosome termini of Selaginella martensii Spring (Pteridophyta) Biol Zbl. 1996;115:260–265.
Gilson P, McFadden GI. The chlorarachniophyte: a cell with two different nuclei and two different telomeres. Chromosoma. 1995;103:635–641. PubMed
Harris EH. The Chlamydomonas sourcebook. San Diego (CA): Academic Press; 1989.
Higashiyama T, Maki S, Yamada T. Molecular organization of Chlorella vulgaris chromosome I: presence of telomeric repeats that are conserved in higher plants. Mol Gen Genet. 1995;246:29–36. PubMed
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. PubMed
Katana A, et al. Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J Phycol. 2001;37:443–451.
Leliaert F, et al. Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci. 2012;31(1):1–46.
Malik HS, Henikoff S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics. 2001;157:1293–1298. PubMed PMC
Matsuzaki M, et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653–657. PubMed
McClintock B. The fusion of broken chromosome ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Mo Agric Exp Stn Res Bull. 1938;290:1–48.
Merchant SS, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318:245–250. PubMed PMC
Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A. 1989;86:7049–7053. PubMed PMC
Miller MA, Pfeiffer W, Schwartz T. Proceedings of the Gateway Computing Environments Workshop (GCE) 2010 Nov 14; New Orleans (LA); New Orleans, LA: Institute of Electrical and Electronics Engineers (IEEE): 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; pp. 1–8.
Mravinac B, Mestrovic N, Cavrak VV, Plohl M. TCAGG, an alternative telomeric sequence in insects. Chromosoma. 2011;120:367–376. PubMed
Nakada T, Misawa K, Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol. 2008;48:281–291. PubMed
Nemcova Y, et al. Jenufa gen. nov.: a new genus of coccoid green algae (Chlorophyceae, Incertae Sedis) previously recorded by environmental sequencing. J Phycol. 2011;47:928–938. PubMed
Neplechova K, Sykorova E, Fajkus J. Comparison of different kinds of probes used for analysis of variant telomeric sequences. Biophys Chem. 2005;117:225–231. PubMed
Neustupa J, et al. Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia. 2011;50:57–66.
Okazaki S, et al. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol Cell Biol. 1993;13:1424–1432. PubMed PMC
Peska V, Sykorova E, Fajkus J. Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins. Cytogenet Genome Res. 2008;122:380–387. PubMed
Petracek ME, Lefebvre PA, Silflow CD, Berman J. Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs. Proc Natl Acad Sci U S A. 1990;87:8222–8226. PubMed PMC
Podlevsky JD, et al. The telomerase database. Nucleic Acids Res. 2008;36:D339–D343. PubMed PMC
Prochnik SE, et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science. 2010;329:223–226. PubMed PMC
Proschold T, Harris EH, Coleman AW. Portrait of a species: Chlamydomonas reinhardtii. Genetics. 2005;170:1601–1610. PubMed PMC
Proschold T, Marin B, Schlosser UG, Melkonian M. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist. 2001;152:265–300. PubMed
Richards EJ, Ausubel FM. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988;53:127–136. PubMed
Rotkova G, et al. An evolutionary change in telomere sequence motif within the plant section Asparagales had significance for telomere nucleoprotein complexes. Cytogenet Genome Res. 2004;107:132–138. PubMed
Rotkova G, Sykorova E, Fajkus J. Characterization of nucleoprotein complexes in plants with human-type telomere motifs. Plant Physiol Biochem. 2007;45:716–721. PubMed
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984;81:8014–8018. PubMed PMC
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning—a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
Shampay J, Blackburn EH. Tetrahymena micronuclear sequences that function as telomeres in yeast. Nucleic Acids Res. 1989;17:3247–3260. PubMed PMC
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008;57:758–771. PubMed
Suzuki K. Characterization of telomere DNA among five species of pteridophytes and bryophytes. J Bryol. 2004;26:175–180.
Sykorova E, et al. Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am J Bot. 2006;93:814–823. PubMed
Sykorova E, Leitch AR, Fajkus J. Asparagales telomerases which synthesize the human type of telomeres. Plant Mol Biol. 2006;60:633–646. PubMed
Sykorova E, et al. The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J. 2003a;34:283–291. PubMed
Sykorova E, et al. Telomere variability in the monocotyledonous plant order Asparagales. Proc R Soc Lond B Biol Sci. 2003b;270:1893–1904. PubMed PMC
Turmel M, et al. Deep division in the Chlorophyceae (Chlorophyta) revealed by chloroplast phylogenomic analyses. J Phycol. 2008;44:739–750. PubMed
Weiss-Schneeweiss H, et al. Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesises vertebrate-type telomere sequences. Plant J. 2004;37:484–493. PubMed
Zauner S, et al. Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. Proc Natl Acad Sci U S A. 2000;97:200–205. PubMed PMC
Evolution of plant telomerase RNAs: farther to the past, deeper to the roots
Origin, Diversity, and Evolution of Telomere Sequences in Plants
Telomerase RNAs in land plants
Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants
Telomere dynamics in the lower plant Physcomitrella patens
A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes