Chromosome engineering points to the cis-acting mechanism of chromosome arm-specific telomere length setting and robustness of plant phenotype, chromatin structure and gene expression

. 2025 Feb ; 121 (4) : e70024.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39962352

Grantová podpora
CZ.02.01.01/00/22_008/0004581 European Regional Development Fund
22-04364S Grantová Agentura České Republiky

The study investigates the impact of targeted chromosome engineering on telomere dynamics, chromatin structure, gene expression, and phenotypic stability in Arabidopsis thaliana. Using precise CRISPR/Cas-based engineering, reciprocal translocations of chromosome arms were introduced between non-homologous chromosomes. The subsequent homozygous generations of plants were assessed for phenotype, transcriptomic changes and chromatin modifications near translocation breakpoints, and telomere length maintenance. Phenotypically, translocated lines were indistinguishable from wild-type plants, as confirmed through morphological assessments and principal component analysis. Gene expression profiling detected minimal differential expression, with affected genes dispersed across the genome, indicating negligible transcriptional impact. Similarly, ChIPseq analysis showed no substantial alterations in the enrichment of key histone marks (H3K27me3, H3K4me1, H3K56ac) near junction sites or across the genome. Finally, bulk and arm-specific telomere lengths remained stable across multiple generations, except for minor variations in one translocation line. These findings highlight the remarkable genomic and phenotypic robustness of A. thaliana despite large-scale chromosomal rearrangements. The study offers insights into the cis-acting mechanisms underlying chromosome arm-specific telomere length setting and establishes the feasibility of chromosome engineering for studies of plant genome evolution and crop improvement strategies.

Zobrazit více v PubMed

Adamusova, K. , Khosravi, S. , Fujimoto, S. , Houben, A. , Matsunaga, S. , Fajkus, J. et al. (2020) Two combinatorial patterns of telomere histone marks in plants with canonical and non‐canonical telomere repeats. The Plant Journal, 102, 678–687. PubMed

Alkan, C. , Coe, B.P. & Eichler, E.E. (2011) Genome structural variation discovery and genotyping. Nature Reviews Genetics, 12, 363–375. PubMed PMC

Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data . Available from: www.bioinformatics.babraham.ac.uk/projects/fastqc/

Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, Statistical Methodology, 57, 289–300.

Benko, S. , Fantes, J.A. , Amiel, J. , Kleinjan, D.J. , Thomas, S. , Ramsay, J. et al. (2009) Highly conserved non‐coding elements on either side of associated with Pierre Robin sequence. Nature Genetics, 41, 359–364. PubMed

Bessoltane, N. , Charlot, F. , Guyon‐Debast, A. , Charif, D. , Mara, K. , Collonnier, C. et al. (2022) Genome‐wide specificity of plant genome editing by both CRISPR‐Cas9 and TALEN. Scientific Reports, 12, 9330. PubMed PMC

Beying, N. , Schmidt, C. , Pacher, M. , Houben, A. & Puchta, H. (2020) CRISPR‐Cas9‐mediated induction of heritable chromosomal translocations in Arabidopsis. Nature Plants, 6, 638–645. PubMed

Bolger, A.M. , Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. PubMed PMC

Buels, R. , Yao, E. , Diesh, C.M. , Hayes, R.D. , Munoz‐Torres, M. , Helt, G. et al. (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biology, 17, 66. PubMed PMC

Burr, B. , Burr, F.A. , Matz, E.C. & Romero‐Severson, J. (1992) Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell, 4, 953–960. PubMed PMC

Dellaporta, S.J. , Wood, J. , Hicks, J.B. (1938) A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.

Dobin, A. , Davis, C.A. , Schlesinger, F. , Drenkow, J. , Zaleski, C. , Jha, S. et al. (2013) STAR: ultrafast universal RNA‐seq aligner. Bioinformatics, 29, 15–21. PubMed PMC

Ewels, P. , Magnusson, M. , Lundin, S. & Kaller, M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32, 3047–3048. PubMed PMC

Fajkus, J. , Kovarik, A. , Kralovics, R. & Bezdek, M. (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum . Molecular and General Genetics, 247, 633–638. PubMed

Fojtová, M. , Fajkus, P. , Polanská, P. , Fajkus, J . (2015) Terminal restriction fragments (TRF) method to analyze telomere lengths. Bio Protocol, 5, 1671.

Fransz, P. , Linc, G. , Lee, C.R. , Aflitos, S.A. , Lasky, J.R. , Toomajian, C. et al. (2016) Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana . The Plant Journal, 88, 159–178. PubMed PMC

Fulneckova, J. & Fajkus, J. (2000) Inhibition of plant telomerase by telomere‐binding proteins from nuclei of telomerase‐negative tissues. FEBS Letters, 467, 305–310. PubMed

Fulnecková, J. , Hasíková, T. , Fajkus, J. , Lukesová, A. , Eliás, M. & Sykorová, E. (2012) Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biology and Evolution, 4, 248–264. PubMed PMC

Harewood, L. & Fraser, P. (2014) The impact of chromosomal rearrangements on regulation of gene expression. Human Molecular Genetics, 23, R76–R82. PubMed

Heacock, M. , Spangler, E. , Riha, K. , Puizina, J. & Shippen, D.E. (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end‐joining. The EMBO Journal, 23, 2304–2313. PubMed PMC

Ijdo, J.W ., Wells, R.A. , Baldini, A. , Reeders, S.T . (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Research, 19, 4780. PubMed PMC

Kassambara, A. & Mundt, F. (2020) Factoextra: extract and visualize the results of multivariate data analyses . R package version 1.0.7.

Khosravi, S. , Hinrichs, R. , Rönspies, M. , Haghi, R. , Puchta, H. & Houben, A. (2024) Epigenetic state and gene expression remain stable after CRISPR/Cas‐mediated chromosomal inversions. bioRxiv. 10.1101/2024.10.15.618494 PubMed DOI PMC

Langmead, B. & Salzberg, S.L. (2012) Fast gapped‐read alignment with Bowtie 2. Nature Methods, 9, 357–359. PubMed PMC

Li, B. & Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA‐Seq data with or without a reference genome. BMC Bioinformatics, 12, 323. PubMed PMC

Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079. PubMed PMC

Love, M.I. , Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15, 550. PubMed PMC

Lowry, D.B. & Willis, J.H. (2010) A widespread chromosomal inversion polymorphism contributes to a major life‐history transition, local adaptation, and reproductive isolation. PLoS Biology, 8, e1000500. PubMed PMC

Lycka, M. , Peska, V. , Demko, M. , Spyroglou, I. , Kilar, A. , Fajkus, J. et al. (2021) WALTER: an easy way to online evaluate telomere lengths from terminal restriction fragment analysis. BMC Bioinformatics, 22, 145. PubMed PMC

Lysak, M.A. , Berr, A. , Pecinka, A. , Schmidt, R. , McBreen, K. & Schubert, I. (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America, 103, 5224–5229. PubMed PMC

Pacher, M. , Schmidt‐Puchta, W. & Puchta, H. (2007) Two unlinked double‐strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics, 175, 21–29. PubMed PMC

Pan, C.T. , Li, G. , Malzahn, A.A. , Cheng, Y.H. , Leyson, B. , Sretenovic, S. et al. (2022) Boosting plant genome editing with a versatile CRISPR‐combo system. Nature Plants, 8, 513–525. PubMed

Pan, C.T. , Wu, X.C. , Markel, K. , Malzahn, A.A. , Kundagrami, N. , Sretenovic, S. et al. (2021) Crispr‐Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 7, 942–953. PubMed

Pavicic, M. , Mouhu, K. , Wang, F. , Bilicka, M. , Chovancek, E. & Himanen, K. (2017) Genomic and phenomic screens for flower‐related RING type ubiquitin E3 ligases in Arabidopsis. Frontiers in Plant Science, 8, 416. PubMed PMC

Puchta, H. & Houben, A. (2024) Plant chromosome engineering—past, present and future. The New Phytologist, 241, 541–552. PubMed

Qi, Y. , Li, X. , Zhang, Y. , Starker, C.G. , Baltes, N.J. , Zhang, F. et al. (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3: Genes, Genomes, Genetics, 3, 1707–1715. PubMed PMC

Quinlan, A.R. & Hall, I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842. PubMed PMC

Ramírez, F. , Dündar, F. , Diehl, S. , Grüning, B.A. & Manke, T. (2014) deepTools: a flexible platform for exploring deep‐sequencing data. Nucleic Acids Research, 42, W187–W191. PubMed PMC

Rönspies, M. , Dorn, A. , Schindele, P. & Puchta, H. (2021) CRISPR‐Cas‐mediated chromosome engineering for crop improvement and synthetic biology. Nature Plants, 7, 566–573. PubMed

Rönspies, M. , Schmidt, C. , Schindele, P. , Lieberman‐Lazarovich, M. , Houben, A. & Puchta, H. (2022) Massive crossover suppression by CRISPR‐Cas‐mediated plant chromosome engineering. Nature Plants, 8, 1153–1159. PubMed

Saleh, A. , Alvarez‐Venegas, R. & Avramova, Z. (2008) An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in plants. Nature Protocols, 3, 1018–1025. PubMed

Schmidt, C. , Fransz, P. , Rönspies, M. , Dreissig, S. , Fuchs, J. , Heckmann, S. et al. (2020) Changing local recombination patterns in Arabidopsis by CRISPR/Cas‐mediated chromosome engineering. Nature Communications, 11, 4418. PubMed PMC

Schmidt, J.C. & Cech, T.R. (2015) Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes & Development, 29, 1095–1105. PubMed PMC

Schubert, I. (2018) What is behind "centromere repositioning"? Chromosoma, 127, 229–234. PubMed

Schubert, I. & Vu, G.T.H. (2016) Genome stability and evolution: attempting a holistic view. Trends in Plant Science, 21, 749–757. PubMed

Shakirov, E.V. & Shippen, D.E. (2004) Length regulation and dynamics of individual telomere tracts in wild‐type Arabidopsis. Plant Cell, 16, 1959–1967. PubMed PMC

Siebert, R. & Puchta, H. (2002) Efficient repair of genomic double‐strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell, 14, 1121–1131. PubMed PMC

Stark, R. & Brown, M. (2011) DiffBind: differential binding analysis of ChIP‐Seq peak data . Available from: www.cruk.cam.ac.uk/core‐facilities/bioinformatics‐core/software/DiffBind

Steinert, J. , Schiml, S. , Fauser, F. & Puchta, H. (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus . The Plant Journal, 84, 1295–1305. PubMed

Tarasov, A. , Vilella, A.J. , Cuppen, E. , Nijman, I.J. & Prins, P. (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics, 31, 2032–2034. PubMed PMC

Teplitz, G.M. , Pasquier, E. , Bonnell, E. , De Laurentiis, E. , Bartle, L. , Lucier, J.‐F. et al. (2024) A mechanism for telomere‐specific telomere length regulation. bioRxiv. 10.1101/2024.06.12.598646 DOI

Vimont, N. , Quah, F.X. , Guillaume‐Schöpfer, D. , Roudier, F. , Dirlewanger, E. , Wigge, P.A. et al. (2020) ChIP‐seq and RNA‐seq for complex and low‐abundance tree buds reveal chromatin and expression co‐dynamics during sweet cherry bud dormancy. Tree Genetics & Genomes, 16, 9.

Wang, Z.P. , Xing, H.L. , Dong, L. , Zhang, H.Y. , Han, C.Y. , Wang, X.C. et al. (2015) Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16, 144. PubMed PMC

Weeks, D.P. , Spalding, M.H. & Yang, B. (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnology Journal, 14, 483–495. PubMed PMC

Yin, X.C. , Romero‐Campero, F.J. , de los Reyes, P. , Yan, P. , Yang, J. , Tian, G.M. et al. (2021) H2AK121ub in Arabidopsis associates with a less accessible chromatin state at transcriptional regulation hotspots. Nature Communications, 12, 315. PubMed PMC

Zhang, Y. , Liu, T. , Meyer, C.A. , Eeckhoute, J. , Johnson, D.S. , Bernstein, B.E. et al. (2008) Model‐based analysis of ChIP‐Seq (MACS). Genome Biology, 9, R137. PubMed PMC

Zhang, Y. , Malzahn, A.A. , Sretenovic, S. & Qi, Y. (2019) The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 5, 778–794. PubMed

Zhang, Y.X. , Ren, Q.R. , Tang, X. , Liu, S.S. , Malzahn, A.A. , Zhou, J.P. et al. (2021) Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 12, 1944. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...