Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/1006710/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30834585
DOI
10.1111/tpj.14304
Knihovny.cz E-zdroje
- Klíčová slova
- Physcomitrella patens, RAD51, RTEL1, Sog One-Like, genome stability, ribosomal RNA genes, telomere,
- MeSH
- DNA-helikasy genetika metabolismus MeSH
- genetické lokusy MeSH
- mechy enzymologie genetika MeSH
- mutace MeSH
- nestabilita genomu * MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální 5S genetika MeSH
- RNA ribozomální genetika MeSH
- rostlinné proteiny genetika metabolismus MeSH
- telomery genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-helikasy MeSH
- rekombinasa Rad51 MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
- RNA ribozomální 5S MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 45S MeSH Prohlížeč
- rostlinné proteiny MeSH
- transkripční faktory MeSH
Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
Centre for Plant Sciences Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK
The Czech Academy of Sciences Institute of Biophysics Královopolská 135 612 65 Brno Czech Republic
Citace poskytuje Crossref.org
Evolution of plant telomerase RNAs: farther to the past, deeper to the roots
The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways
G4 Structures in Control of Replication and Transcription of rRNA Genes
Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes)
GENBANK
SRX1176830, SRX3381969, SRX3381970, SRX2484017