Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes)

. 2019 ; 10 () : 1066. [epub] 20190905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31543890

Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structure was analyzed using fluorescence in situ hybridization (FISH) and immunoprecipitation (CHIP) assays. Results: In contrast to seed plants, bryophyte rDNAs were efficiently digested with methylation-sensitive enzymes indicating no or low levels of CG and CHG methylation in these loci. The rDNA methylom analyses revealed variation between species ranging from negligible (<3%, P. formosum, P. patens) to moderate (7 and 17% in M. polymorpha and D. scoparium, respectively) methylation levels. There were no differences between coding and noncoding parts of rDNA units and between gametophyte and sporophyte tissues. However, major satellite repeat and transposable elements were heavily methylated in P. formosum and D. scoparium. In P. formosum rDNA, the euchromatic H3K4m3 and heterochromatic H3K9m2 histone marks were nearly balanced contrasting the angiosperms data where H3K9m2 typically dominates rDNA chromatin. In moss interphase nuclei, rDNA was localized at the nucleolar periphery and its condensation level was high. Conclusions: Unlike seed plants, the rRNA genes seem to escape global methylation machinery in bryophytes. Distinct epigenetic features may be related to rDNA expression and the physiology of these early diverging plants that exist in haploid state for most of their life cycles.

Zobrazit více v PubMed

Bewley J. D. (1972). Conservation of polyribosomes in moss DOI

Bewley J. D. (1973. a). Desiccation and protein-synthesis in moss DOI

Bewley J. D. (1973. b). Polyribosomes conserved during desiccation of moss PubMed DOI PMC

Bewley J. D. (1979). Physiological-aspects of desiccation tolerance. Annu. Rev. Plant Phys. 30, 195–238. 10.1146/annurev.pp.30.060179.001211 DOI

Brautigam K., Cronk Q. (2018). DNA Methylation and the evolution of developmental complexity in plants. Front. Plant Sci. 9, 1447 10.3389/fpls.2018.01447 PubMed DOI PMC

Buckler E. S., Ippolito A., Holtsford T. P. (1997). The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics 145, 821–832. PubMed PMC

Capesius I. (1997). Analysis of the ribosomal RNA gene repeat from the moss PubMed DOI

Capesius I., Stech M. (1997). Molecular relationships within mosses based on 18S rRNA gene sequences. Nova Hedwigia 64, 525–533.

Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C. S. (2016). Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Gene. Dev. 30, 177–190. 10.1101/gad.273755.115 PubMed DOI PMC

Cox C. J., Goffinet B., Shaw A. J., Boles S. B. (2004). Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Syst. Bot. 29, 234–250. 10.1600/036364404774195458 DOI

Dobesova E., Malinska H., Matyasek R., Leitch A. R., Soltis D. E., Soltis P. S., et al. (2015). Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, PubMed DOI PMC

Dolezel J., Binarova P., Lucretti S. (1989). Analysis of nuclear-DNA content in plant-cells by flow-cytometry. Biol. Plantarum 31, 113–120. 10.1007/BF02907241 DOI

Engel P. P. (1968). The induction of biochemical and morphological mutants in the moss Physcomitrella patens. Am. J. Bot. 55, 438–446. 10.2307/2440573 DOI

Espinas M. L., Carballo M. (1993). Pulsed-field gel-electrophoresis analysis of higher-order chromatin structures of PubMed DOI

Fojtova M., Kovarik A., Matyasek R. (2001). Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant. Sci. 160, 585–593. 10.1016/S0168-9452(00)00411-8 PubMed DOI

Fukuda T., Sakai M., Takano H., Ono K., Takio S. (2004). Hypermethylation of retrotransposons in the liverwort PubMed DOI

Fulnecek J., Matyasek R., Kovarik A., Bezdek M. (1998). Mapping of 5-methylcytosine residues in PubMed DOI

Garcia S., Crhak Khaitova L., Kovarik A. (2012. a). Expression of 5S rRNA genes linked to 35S rDNA in plants, their epigenetic modification and regulatory element divergence. Bmc Plant Biol. 12, 95. 10.1186/1471-2229-12-95 PubMed DOI PMC

Garcia S., Garnatje T., Kovarik A. (2012. b). Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121, 389–394. 10.1007/s00412-012-0368-7 PubMed DOI

Garcia S., Kovarik A., Leitch A. R., Garnatje T. (2017). Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89, 1020–1030. 10.1111/tpj.13442 PubMed DOI

Goffová I., Vágnerová R., Peška V., Franek M., Havlová K., Holá M., et al. (2019). Roles of RAD51 and RTEL1 in telomere and rDNA stability in PubMed DOI

Goldsbrough P. B., Ellis T. H., Cullis C. A. (1981). Organisation of the 5S RNA genes in flax. Nucleic Acids Res. 9, 5895–5904. 10.1093/nar/9.22.5895 PubMed DOI PMC

Gottlob-mchugh S. G., Levesque M., Mackenzie K., Olson M., Yarosh O., Johnson D. A. (1990). Organization of the 5S ribosomal-RNA genes in the soybean PubMed DOI

Harpke D., Peterson A. (2006). Non-concerted ITS evolution in PubMed DOI

He-Nygren X., Juslen A., Ahonen I., Glenny D., Piippo S. (2006). Illuminating the evolutionary history of liverworts (Marchantiophyta) - towards a natural classification. Cladistics 22, 1–31. 10.1111/j.1096-0031.2006.00089.x PubMed DOI

Hemleben V., Ganal M., Gersnter J., Schiebel K., Torres R. A. (1988). “Organization and length heterogeneity of plant ribosomal RNA genes,” in The architecture of Eukaryotic Gene. Ed. Kahl G. (Weinheim: VHC; ), 371–384.

Herklotz V., Kovarik A., Lunerova J., Lippitsch S., Groth M., Ritz C. M. (2018). The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [ PubMed DOI

Hofmeister W. (1979). “Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen. und der Samenbildung der Coniferen,” in Hist. Nat. Classica. (Vaduz: Cramer; ), 1851.

Hola M., Kozak J., Vagnerova R., Angelis K. J. (2013). Genotoxin Induced mutagenesis in the model plant PubMed DOI PMC

Hyvonen J., Koskinen S., Merrill G. L. S., Hedderson T. A., Stenroos S. (2004). Phylogeny of the Polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. Mol. Phylogenet. Evol. 31, 915–928. 10.1016/j.ympev.2003.10.003 PubMed DOI

Kirov I., Gilyok M., Knyazev A., Fesenko I. (2018). Pilot satellitome analysis of the model plant, PubMed DOI PMC

Kiss T., Szkukalek A., Solymosy F. (1989). Nucleotide sequence of a 17S (18S) rRNA gene from tomato. Nucleic Acids Res. 17, 2127. 10.1093/nar/17.5.2127 PubMed DOI PMC

Komarova N. Y., Grabe T., Huigen D. J., Hemleben V., Volkov R. A. (2004). Organization, differential expression and methylation of rDNA in artificial PubMed DOI

Kovarik A., Matyasek R., Leitch A., Gazdova B., Fulnecek J., Bezdek M. (1997). Variability in CpNpG methylation in higher plant genomes. Gene 204, 25–33. 10.1016/S0378-1119(97)00503-9 PubMed DOI

Kovarik A., Pires J. C., Leitch A. R., Lim K. Y., Sherwood A. M., Matyasek R., et al. (2005). Rapid concerted evolution of nuclear ribosomal DNA in two PubMed DOI PMC

Kumar S., Chinnusamy V., Mohapatra T. (2018). Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front. Genet. 9, 640. 10.3389/fgene.2018.00640 PubMed DOI PMC

Lang D., Ullrich K. K., Murat F., Fuchs J., Jenkins J., Haas F. B., et al. (2018). The PubMed DOI

Lawrence R. J., Earley K., Pontes O., Silva M., Chen Z. J., Neves N., et al. (2004). A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell 13, 599–609. 10.1016/S1097-2765(04)00064-4 PubMed DOI

Lim K. Y., Kovarik A., Matyasek R., Bezdek M., Lichtenstein C. P., Leitch A. R. (2000). Gene conversion of ribosomal DNA in PubMed DOI

Liu Y., Forrest L. L., Bainard J. D., Budke J. M., Goffinet B. (2013). Organellar genome, nuclear ribosomal DNA repeat unit, and microsatellites isolated from a small-scale of 454 GS FLX sequencing on two mosses. Mol. Phylogenet. Evol. 66, 1089–1094. 10.1016/j.ympev.2012.12.006 PubMed DOI

Markham K. R., Moore N. A., Porter L. J. (1978). Changeover in flavonoid pattern accompanying reproductive structure formation in a Bryophyte. Phytochemistry 17, 911–913. 10.1016/S0031-9422(00)88645-8 DOI

Melamed-Bessudo C., Levy A. A. (2012). Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. P. Natl. Acad. Sci. U. S. A. 109, E981–E988. 10.1073/pnas.1120742109 PubMed DOI PMC

Milyutina I. A., Ignatova E. A., Ignatov M. S., Goryunov D. V., Troitsky A. V. (2015). Structure of intergenic spacer IGS1 of ribosomal operon from PubMed DOI

Nakayama S., Fujishita M., Sone T., Ohyama K. (2001). Additional locus of rDNA sequence specific to the X chromosome of the liverwort, PubMed DOI

Newton A. E., Cox C. J., Duckett J. G., Wheeler J. A., Goffinet B., Hedderson T. A. J., et al. (2000). Evolution of the major moss lineages: Phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103, 187–211. 10.1639/0007-2745(2000)103[0187:EOTMML]2.0.CO;2 DOI

Newton M. E. (1977. a). Heterochromatin as a cyto-taxonomic character in liverworts - DOI

Newton M. E. (1977. b). Chromosomal relationships of heterochromatin bodies in a moss, DOI

Nieto Feliner G., Rossello J. A. (2012). “Concerted evolution of multigene families and homeologous recombination,” in Plant Genome Diversity. Ed. Wendel J. F. (Springer-Verlag: Wien: ), 171–194. 10.1007/978-3-7091-1130-7_12 DOI

Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. 10.1093/bioinformatics/btt054 PubMed DOI

Noy-Malka C., Yaari R., Itzhaki R., Mosquna A., Gershovitz N. A., Katz A., et al. (2014). A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of PubMed DOI

Orzechowska M., Figura K., Siwinska D. (2018). Chromosomal distribution of rRNA genes in the karyotypes of two dioicous liverwort species from the genus DOI

Orzechowska M., Siwinska D., Maluszynska J. (2010). Molecular cytogenetic analyses of haploid and allopolyploid DOI

Parihar V., Arya D., Walia A., Tyagi V., Dangwal M., Verma V., et al. (2019). Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss PubMed DOI

Peng J. C., Karpen G. H. (2007). H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–U24. 10.1038/ncb1514 PubMed DOI PMC

Preuss S. B., Costa-Nunes P., Tucker S., Pontes O., Lawrence R. J., Mosher R., et al. (2008). Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol. Cell 32, 673–684. 10.1016/j.molcel.2008.11.009 PubMed DOI PMC

Rensing S. A. (2018. a). Great moments in evolution: the conquest of land by plants. Curr. Opin. Plant Biol. 42, 49–54. 10.1016/j.pbi.2018.02.006 PubMed DOI

Rensing S. A. (2018. b). Plant evolution: phylogenetic relationships between the earliest land plants. Curr. Biol. 28, R210–R213. 10.1016/j.cub.2018.01.034 PubMed DOI

Rosato M., Kovarik A., Garilleti R., Rossello J. A. (2016). Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. Plos One 11, 0162544. 10.1371/journal.pone.0162544 PubMed DOI PMC

Sardana R., Odell M., Flavell R. (1993). Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of ribosomal-RNA genes and nucleolar expression in wheat. Mol. Gen. Genet. 236, 155–162. 10.1007/BF00277107 PubMed DOI

Schmid M. W., Giraldo-Fonseca A., Rovekamp M., Smetanin D., Bowman J. L., Grossniklaus U. (2018). Extensive epigenetic reprogramming during the life cycle of PubMed DOI PMC

Simon L., Rabanal F. A., Dubos T., Oliver C., Lauber D., Poulet A., et al. (2018). Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in PubMed DOI PMC

Sone T., Fujisawa M., Takenaka M., Nakagawa S., Yamaoka S., Sakaida M., et al. (1999). Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol. Biol. 41, 679–685. 10.1023/A:1006398419556 PubMed DOI

Takio S., Takase N., Satoh T. (1999). Hypermethylation of CpNpG and CpG sequences flanking telomeres in the liverwort, DOI

Vidalis A., Zivkovic D., Wardenaar R., Roquis D., Tellier A., Johannes F. (2016). Methylome evolution in plants. Genome Biol. 17, 264. 10.1186/s13059-016-1127-5 PubMed DOI PMC

Wang W. C., Ma L., Becher H., Garcia S., Kovarikova A., Leitch I. J., et al. (2016). Astonishing 35S rDNA diversity in the gymnosperm species PubMed DOI PMC

Weitz S., Ikan R. (1977). Bracteatin from moss DOI

Wicke S., Costa A., Munoz J., Quandt D. (2011). Restless 5S: The re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 61, 321–332. 10.1016/j.ympev.2011.06.023 PubMed DOI

Yaari R., Noy-Malka C., Wiedemann G., Gershovitz N. A., Reski R., Katz A., et al. (2015). DNA METHYLTRANSFERASE 1 is involved in (m)CG and (m)CCG DNA methylation and is essential for sporophyte development in PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways

. 2021 Jan 28 ; 22 (3) : . [epub] 20210128

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...