Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31543890
PubMed Central
PMC6739443
DOI
10.3389/fpls.2019.01066
Knihovny.cz E-zdroje
- Klíčová slova
- bryophytes, cytosine methylation, epigenetics, genome evolution, histone marks, rDNA,
- Publikační typ
- časopisecké články MeSH
Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structure was analyzed using fluorescence in situ hybridization (FISH) and immunoprecipitation (CHIP) assays. Results: In contrast to seed plants, bryophyte rDNAs were efficiently digested with methylation-sensitive enzymes indicating no or low levels of CG and CHG methylation in these loci. The rDNA methylom analyses revealed variation between species ranging from negligible (<3%, P. formosum, P. patens) to moderate (7 and 17% in M. polymorpha and D. scoparium, respectively) methylation levels. There were no differences between coding and noncoding parts of rDNA units and between gametophyte and sporophyte tissues. However, major satellite repeat and transposable elements were heavily methylated in P. formosum and D. scoparium. In P. formosum rDNA, the euchromatic H3K4m3 and heterochromatic H3K9m2 histone marks were nearly balanced contrasting the angiosperms data where H3K9m2 typically dominates rDNA chromatin. In moss interphase nuclei, rDNA was localized at the nucleolar periphery and its condensation level was high. Conclusions: Unlike seed plants, the rRNA genes seem to escape global methylation machinery in bryophytes. Distinct epigenetic features may be related to rDNA expression and the physiology of these early diverging plants that exist in haploid state for most of their life cycles.
Department of Botany and Zoology Masaryk University Brno Czechia
Jardín Botánico ICBiBE Unidad Asociada CSIC Universidad de Valencia Valencia Spain
Zobrazit více v PubMed
Bewley J. D. (1972). Conservation of polyribosomes in moss Tortula-ruralis during total desiccation. J. Exp. Bot. 23, 692–698. 10.1093/jxb/23.3.692 DOI
Bewley J. D. (1973. a). Desiccation and protein-synthesis in moss Tortula-ruralis. Can. J. Bot. 51, 203–206. 10.1139/b73-027 DOI
Bewley J. D. (1973. b). Polyribosomes conserved during desiccation of moss Tortula-ruralis are active. Plant Physiol. 51, 285–288. 10.1104/pp.51.2.285 PubMed DOI PMC
Bewley J. D. (1979). Physiological-aspects of desiccation tolerance. Annu. Rev. Plant Phys. 30, 195–238. 10.1146/annurev.pp.30.060179.001211 DOI
Brautigam K., Cronk Q. (2018). DNA Methylation and the evolution of developmental complexity in plants. Front. Plant Sci. 9, 1447 10.3389/fpls.2018.01447 PubMed DOI PMC
Buckler E. S., Ippolito A., Holtsford T. P. (1997). The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics 145, 821–832. PubMed PMC
Capesius I. (1997). Analysis of the ribosomal RNA gene repeat from the moss Funaria hygrometrica. Plant Mol. Biol. 33, 559–564. 10.1023/A:1005740031313 PubMed DOI
Capesius I., Stech M. (1997). Molecular relationships within mosses based on 18S rRNA gene sequences. Nova Hedwigia 64, 525–533.
Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C. S. (2016). Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Gene. Dev. 30, 177–190. 10.1101/gad.273755.115 PubMed DOI PMC
Cox C. J., Goffinet B., Shaw A. J., Boles S. B. (2004). Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Syst. Bot. 29, 234–250. 10.1600/036364404774195458 DOI
Dobesova E., Malinska H., Matyasek R., Leitch A. R., Soltis D. E., Soltis P. S., et al. (2015). Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity (Edinb.) 114, 356–365. 10.1038/hdy.2014.111 PubMed DOI PMC
Dolezel J., Binarova P., Lucretti S. (1989). Analysis of nuclear-DNA content in plant-cells by flow-cytometry. Biol. Plantarum 31, 113–120. 10.1007/BF02907241 DOI
Engel P. P. (1968). The induction of biochemical and morphological mutants in the moss Physcomitrella patens. Am. J. Bot. 55, 438–446. 10.2307/2440573 DOI
Espinas M. L., Carballo M. (1993). Pulsed-field gel-electrophoresis analysis of higher-order chromatin structures of Zea mays - highly methylated DNA in the 50 Kb chromatin structure. Plant Mol. Biol. 21, 847–857. 10.1007/BF00027116 PubMed DOI
Fojtova M., Kovarik A., Matyasek R. (2001). Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant. Sci. 160, 585–593. 10.1016/S0168-9452(00)00411-8 PubMed DOI
Fukuda T., Sakai M., Takano H., Ono K., Takio S. (2004). Hypermethylation of retrotransposons in the liverwort Marchantia paleacea var. diptera. Plant Cell Rep. 22, 594–598. 10.1007/s00299-003-0739-x PubMed DOI
Fulnecek J., Matyasek R., Kovarik A., Bezdek M. (1998). Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing. Mol. Gen. Genet. 259, 133–141. 10.1007/s004380050798 PubMed DOI
Garcia S., Crhak Khaitova L., Kovarik A. (2012. a). Expression of 5S rRNA genes linked to 35S rDNA in plants, their epigenetic modification and regulatory element divergence. Bmc Plant Biol. 12, 95. 10.1186/1471-2229-12-95 PubMed DOI PMC
Garcia S., Garnatje T., Kovarik A. (2012. b). Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121, 389–394. 10.1007/s00412-012-0368-7 PubMed DOI
Garcia S., Kovarik A., Leitch A. R., Garnatje T. (2017). Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89, 1020–1030. 10.1111/tpj.13442 PubMed DOI
Goffová I., Vágnerová R., Peška V., Franek M., Havlová K., Holá M., et al. (2019). Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. Plant J. 98, 1090–1105. 10.1111/tpj.14304 PubMed DOI
Goldsbrough P. B., Ellis T. H., Cullis C. A. (1981). Organisation of the 5S RNA genes in flax. Nucleic Acids Res. 9, 5895–5904. 10.1093/nar/9.22.5895 PubMed DOI PMC
Gottlob-mchugh S. G., Levesque M., Mackenzie K., Olson M., Yarosh O., Johnson D. A. (1990). Organization of the 5S ribosomal-RNA genes in the soybean Glycine max (L) Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33, 486–494. 10.1139/g90-072 PubMed DOI
Harpke D., Peterson A. (2006). Non-concerted ITS evolution in Mammillaria (Cactaceae). Mol. Phylogenet. Evol. 41, 579–593. 10.1016/j.ympev.2006.05.036 PubMed DOI
He-Nygren X., Juslen A., Ahonen I., Glenny D., Piippo S. (2006). Illuminating the evolutionary history of liverworts (Marchantiophyta) - towards a natural classification. Cladistics 22, 1–31. 10.1111/j.1096-0031.2006.00089.x PubMed DOI
Hemleben V., Ganal M., Gersnter J., Schiebel K., Torres R. A. (1988). “Organization and length heterogeneity of plant ribosomal RNA genes,” in The architecture of Eukaryotic Gene. Ed. Kahl G. (Weinheim: VHC; ), 371–384.
Herklotz V., Kovarik A., Lunerova J., Lippitsch S., Groth M., Ritz C. M. (2018). The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.) Ser.] exhibiting non-symmetrical meiosis. Plant J. 94, 77–90. 10.1111/tpj.13843 PubMed DOI
Hofmeister W. (1979). “Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen. und der Samenbildung der Coniferen,” in Hist. Nat. Classica. (Vaduz: Cramer; ), 1851.
Hola M., Kozak J., Vagnerova R., Angelis K. J. (2013). Genotoxin Induced mutagenesis in the model plant Physcomitrella patens. Biomed Res. Int. 2013, 535049. 10.1155/2013/535049 PubMed DOI PMC
Hyvonen J., Koskinen S., Merrill G. L. S., Hedderson T. A., Stenroos S. (2004). Phylogeny of the Polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. Mol. Phylogenet. Evol. 31, 915–928. 10.1016/j.ympev.2003.10.003 PubMed DOI
Kirov I., Gilyok M., Knyazev A., Fesenko I. (2018). Pilot satellitome analysis of the model plant, Physcomitrella patens, revealed a transcribed and high copy IGS related tandem repeat. Comp. Cytogenet. 12, 493–513. 10.3897/CompCytogen.v12i4.31015 PubMed DOI PMC
Kiss T., Szkukalek A., Solymosy F. (1989). Nucleotide sequence of a 17S (18S) rRNA gene from tomato. Nucleic Acids Res. 17, 2127. 10.1093/nar/17.5.2127 PubMed DOI PMC
Komarova N. Y., Grabe T., Huigen D. J., Hemleben V., Volkov R. A. (2004). Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Plant Mol. Biol. 56, 439–463. 10.1007/s11103-004-4678-x PubMed DOI
Kovarik A., Matyasek R., Leitch A., Gazdova B., Fulnecek J., Bezdek M. (1997). Variability in CpNpG methylation in higher plant genomes. Gene 204, 25–33. 10.1016/S0378-1119(97)00503-9 PubMed DOI
Kovarik A., Pires J. C., Leitch A. R., Lim K. Y., Sherwood A. M., Matyasek R., et al. (2005). Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169, 931–944. 10.1534/genetics.104.032839 PubMed DOI PMC
Kumar S., Chinnusamy V., Mohapatra T. (2018). Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front. Genet. 9, 640. 10.3389/fgene.2018.00640 PubMed DOI PMC
Lang D., Ullrich K. K., Murat F., Fuchs J., Jenkins J., Haas F. B., et al. (2018). The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515–533. 10.1111/tpj.13801 PubMed DOI
Lawrence R. J., Earley K., Pontes O., Silva M., Chen Z. J., Neves N., et al. (2004). A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell 13, 599–609. 10.1016/S1097-2765(04)00064-4 PubMed DOI
Lim K. Y., Kovarik A., Matyasek R., Bezdek M., Lichtenstein C. P., Leitch A. R. (2000). Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109, 161–172. 10.1007/s004120050424 PubMed DOI
Liu Y., Forrest L. L., Bainard J. D., Budke J. M., Goffinet B. (2013). Organellar genome, nuclear ribosomal DNA repeat unit, and microsatellites isolated from a small-scale of 454 GS FLX sequencing on two mosses. Mol. Phylogenet. Evol. 66, 1089–1094. 10.1016/j.ympev.2012.12.006 PubMed DOI
Markham K. R., Moore N. A., Porter L. J. (1978). Changeover in flavonoid pattern accompanying reproductive structure formation in a Bryophyte. Phytochemistry 17, 911–913. 10.1016/S0031-9422(00)88645-8 DOI
Melamed-Bessudo C., Levy A. A. (2012). Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. P. Natl. Acad. Sci. U. S. A. 109, E981–E988. 10.1073/pnas.1120742109 PubMed DOI PMC
Milyutina I. A., Ignatova E. A., Ignatov M. S., Goryunov D. V., Troitsky A. V. (2015). Structure of intergenic spacer IGS1 of ribosomal operon from Schistidium mosses. Biochemistry (Mosc.) 80, 1485–1491. 10.1134/S0006297915110103 PubMed DOI
Nakayama S., Fujishita M., Sone T., Ohyama K. (2001). Additional locus of rDNA sequence specific to the X chromosome of the liverwort, Marchantia polymorpha. Chromosome Res. 9, 469–473. 10.1023/A:1011676328165 PubMed DOI
Newton A. E., Cox C. J., Duckett J. G., Wheeler J. A., Goffinet B., Hedderson T. A. J., et al. (2000). Evolution of the major moss lineages: Phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103, 187–211. 10.1639/0007-2745(2000)103[0187:EOTMML]2.0.CO;2 DOI
Newton M. E. (1977. a). Heterochromatin as a cyto-taxonomic character in liverworts - Pellia, Riccardia and Cryptothallus. J. Bryol. 9, 327–342. 10.1179/jbr.1977.9.3.327 DOI
Newton M. E. (1977. b). Chromosomal relationships of heterochromatin bodies in a moss, Dicranum tauricum Sapehin. J. Bryol. 9, 557–564. 10.1179/jbr.1977.9.4.557 DOI
Nieto Feliner G., Rossello J. A. (2012). “Concerted evolution of multigene families and homeologous recombination,” in Plant Genome Diversity. Ed. Wendel J. F. (Springer-Verlag: Wien: ), 171–194. 10.1007/978-3-7091-1130-7_12 DOI
Novak P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Noy-Malka C., Yaari R., Itzhaki R., Mosquna A., Gershovitz N. A., Katz A., et al. (2014). A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of Physcomitrella patens. Plant Mol. Biol. 84, 719–735. 10.1007/s11103-013-0165-6 PubMed DOI
Orzechowska M., Figura K., Siwinska D. (2018). Chromosomal distribution of rRNA genes in the karyotypes of two dioicous liverwort species from the genus Pellia Raddi. J. Bryol. 40, 384–392. 10.1080/03736687.2018.1474423 DOI
Orzechowska M., Siwinska D., Maluszynska J. (2010). Molecular cytogenetic analyses of haploid and allopolyploid Pellia species. J. Bryol. 32, 113–121. 10.1179/037366810X12578498136075 DOI
Parihar V., Arya D., Walia A., Tyagi V., Dangwal M., Verma V., et al. (2019). Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens: its conserved protein interactions in land plants. Plant J. 97, 221–239. 10.1111/tpj.14182 PubMed DOI
Peng J. C., Karpen G. H. (2007). H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–U24. 10.1038/ncb1514 PubMed DOI PMC
Preuss S. B., Costa-Nunes P., Tucker S., Pontes O., Lawrence R. J., Mosher R., et al. (2008). Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol. Cell 32, 673–684. 10.1016/j.molcel.2008.11.009 PubMed DOI PMC
Rensing S. A. (2018. a). Great moments in evolution: the conquest of land by plants. Curr. Opin. Plant Biol. 42, 49–54. 10.1016/j.pbi.2018.02.006 PubMed DOI
Rensing S. A. (2018. b). Plant evolution: phylogenetic relationships between the earliest land plants. Curr. Biol. 28, R210–R213. 10.1016/j.cub.2018.01.034 PubMed DOI
Rosato M., Kovarik A., Garilleti R., Rossello J. A. (2016). Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. Plos One 11, 0162544. 10.1371/journal.pone.0162544 PubMed DOI PMC
Sardana R., Odell M., Flavell R. (1993). Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of ribosomal-RNA genes and nucleolar expression in wheat. Mol. Gen. Genet. 236, 155–162. 10.1007/BF00277107 PubMed DOI
Schmid M. W., Giraldo-Fonseca A., Rovekamp M., Smetanin D., Bowman J. L., Grossniklaus U. (2018). Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biol. 19, 9. 10.1186/s13059-017-1383-z PubMed DOI PMC
Simon L., Rabanal F. A., Dubos T., Oliver C., Lauber D., Poulet A., et al. (2018). Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Res. 46, 3019–3033. 10.1093/nar/gky163 PubMed DOI PMC
Sone T., Fujisawa M., Takenaka M., Nakagawa S., Yamaoka S., Sakaida M., et al. (1999). Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol. Biol. 41, 679–685. 10.1023/A:1006398419556 PubMed DOI
Takio S., Takase N., Satoh T. (1999). Hypermethylation of CpNpG and CpG sequences flanking telomeres in the liverwort, Marchantia paleacea var. diptera. J. Plant Physiol. 154, 341–345. 10.1016/S0176-1617(99)80177-1 DOI
Vidalis A., Zivkovic D., Wardenaar R., Roquis D., Tellier A., Johannes F. (2016). Methylome evolution in plants. Genome Biol. 17, 264. 10.1186/s13059-016-1127-5 PubMed DOI PMC
Wang W. C., Ma L., Becher H., Garcia S., Kovarikova A., Leitch I. J., et al. (2016). Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125, 683–699. 10.1007/s00412-015-0556-3 PubMed DOI PMC
Weitz S., Ikan R. (1977). Bracteatin from moss Funaria hygrometrica. Phytochemistry 16, 1108–1109. 10.1016/S0031-9422(00)86759-X DOI
Wicke S., Costa A., Munoz J., Quandt D. (2011). Restless 5S: The re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 61, 321–332. 10.1016/j.ympev.2011.06.023 PubMed DOI
Yaari R., Noy-Malka C., Wiedemann G., Gershovitz N. A., Reski R., Katz A., et al. (2015). DNA METHYLTRANSFERASE 1 is involved in (m)CG and (m)CCG DNA methylation and is essential for sporophyte development in Physcomitrella patens. Plant Mol. Biol. 88, 387–400. 10.1007/s11103-015-0328-8 PubMed DOI
The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways