Genotoxin induced mutagenesis in the model plant Physcomitrella patens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24383055
PubMed Central
PMC3872018
DOI
10.1155/2013/535049
Knihovny.cz E-zdroje
- MeSH
- analýza jednotlivých buněk MeSH
- bleomycin farmakologie MeSH
- buněčný cyklus genetika MeSH
- haploidie * MeSH
- homologní rekombinace genetika MeSH
- mechy genetika růst a vývoj MeSH
- mutace MeSH
- mutageneze genetika MeSH
- mutageny farmakologie MeSH
- oprava DNA genetika MeSH
- oxidační stres účinky léků MeSH
- poškození DNA účinky léků MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny biosyntéza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bleomycin MeSH
- mutageny MeSH
- rostlinné proteiny MeSH
The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype.
Institute of Experimental Botany ASCR Na Karlovce 1 160 00 Praha 6 Czech Republic
Institute of Organic Chemistry and Biochemistry ASCR Flemingovo nám 2 1600 00 Praha 6 Czech Republic
Zobrazit více v PubMed
Cove DJ, Knight CD, Lamparter T. Mosses as model systems. Trends in Plant Science. 1997;2(3):99–105.
Šmídková M, Holá M, Angelis KJ. Efficient biolistic transformation of the moss Physcomitrella patens . Biologia Plantarum. 2010;54(4):777–780.
Gaillard C, Moffatt BA, Blacker M, Laloue M. Male sterility associated with APRT deficiency in Arabidopsis thaliana results from a mutation in the gene APT1. Molecular & General Genetics. 1998;257(3):348–353. PubMed
Trouiller B, Schaefer DG, Charlot F, Nogué F. MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens . Nucleic Acids Research. 2006;34(1):232–242. PubMed PMC
Trouiller B, Charlot F, Choinard S, Schaefer DG, Nogué F. Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of Bryophyte transformation. Biotechnology Letters. 2007;29(10):1591–1598. PubMed
Kamisugi Y, Schaefer DG, Kozak J, et al. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens . Nucleic Acids Research. 2012;40(8):3496–3510. PubMed PMC
Knight CD, Cuming AC, Quatrano RS. Moss gene technology. In: Gilmartin PM, Bowler C, editors. Molecular Plant Biology Volume 2. Vol. 2. Oxford, UK: Oxford University Press; 2002. pp. 285–299.
Markmann-Mulisch U, Wendeler E, Zobell O, Schween G, Steinbiss H-H, Reiss B. Differential requirements for RAD51 in Physcomitrella patens and Arabidopsis thaliana development and DNA damage repair. Plant Cell. 2007;19(10):3080–3089. PubMed PMC
Angelis KJ, Dusinska M, Collins AR. Single cell gel electrophoresis: detection of DNA damage at different levels of sensitivity. Electrophoresis. 1999;20(10):2133–2138. PubMed
Menke M, Chen I-P, Angelis KJ, Schubert I. DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins. Mutation Research. 2001;493(1-2):87–93. PubMed
Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nature Protocols. 2006;1(1):23–29. PubMed
Kozak J, West CE, White C, da Costa-Nunes JA, Angelis KJ. Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair. 2009;8(3):413–419. PubMed
Murray JM, Carr AM. Smc5/6: a link between DNA repair and unidirectional replication? Nature Reviews Molecular Cell Biology. 2008;9(2):177–182. PubMed
Steighner RJ, Povirk LF. Bleomycin-induced DNA lesions at mutational hot spots: implications for the mechanism of double-strand cleavage. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(21):8350–8354. PubMed PMC
Georgakilas AG. Processing of DNA damage clusters in human cells: current status of knowledge. Molecular BioSystems. 2007;4(1):30–35. PubMed
Georgakilas AG, Holt SM, Hair JM, Loftin CW. Measurement of oxidatively-induced clustered DNA lesions using a novel adaptation of single cell gel electrophoresis (comet assay) In: Bonifacino SJ, et al., editors. Current Protocols in Cell Biology. chapter 6. John Wiley & Sons; 2010. p. p. 6.11. PubMed
Ahnström G, Erixon K. Radiation induced strand breakage in DNA from mammalian cells. Strand separation in alkaline solution. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine. 1973;23(3):285–289. PubMed
Donà M, Ventura L, Balestrazz A, et al. Dose-dependent reactive species accumulation and preferential double-strand breaks repair are featured in the γ-ray response in Medicago truncatula cells. Plant Molecular Biology Reporter. 2013
Waterworth WM, Kozak J, Provost CM, Bray CM, Angelis KJ, West CE. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks. BMC Plant Biology. 2009;9, article 79 PubMed PMC
Charbonnel C, Allain E, Gallego ME, White CI. Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair. 2011;10(6):611–619. PubMed
Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes)
Evolutionarily Distant Streptophyta Respond Differently to Genotoxic Stress
Telomere dynamics in the lower plant Physcomitrella patens