RAD51 and RAD51B Play Diverse Roles in the Repair of DNA Double Strand Breaks in Physcomitrium patens
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36833232
PubMed Central
PMC9956106
DOI
10.3390/genes14020305
PII: genes14020305
Knihovny.cz E-zdroje
- Klíčová slova
- DNA double-strand break (DSB), Physcomitrella, bleomycin, comet assay, evolutionary divergence, homologous recombination (HR), non-homologous end-joining (NHEJ), rDNA, repair kinetic,
- MeSH
- dvouřetězcové zlomy DNA * MeSH
- genový targeting MeSH
- homologní rekombinace MeSH
- rekombinasa Rad51 * metabolismus MeSH
- ribozomální DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rekombinasa Rad51 * MeSH
- ribozomální DNA MeSH
RAD51 is involved in finding and invading homologous DNA sequences for accurate homologous recombination (HR). Its paralogs have evolved to regulate and promote RAD51 functions. The efficient gene targeting and high HR rates are unique in plants only in the moss Physcomitrium patens (P. patens). In addition to two functionally equivalent RAD51 genes (RAD1-1 and RAD51-2), other RAD51 paralogues were also identified in P. patens. For elucidation of RAD51's involvement during DSB repair, two knockout lines were constructed, one mutated in both RAD51 genes (Pprad51-1-2) and the second with mutated RAD51B gene (Pprad51B). Both lines are equally hypersensitive to bleomycin, in contrast to their very different DSB repair efficiency. Whereas DSB repair in Pprad51-1-2 is even faster than in WT, in Pprad51B, it is slow, particularly during the second phase of repair kinetic. We interpret these results as PpRAD51-1 and -2 being true functional homologs of ancestral RAD51 involved in the homology search during HR. Absence of RAD51 redirects DSB repair to the fast NHEJ pathway and leads to a reduced 5S and 18S rDNA copy number. The exact role of the RAD51B paralog remains unclear, though it is important in damage recognition and orchestrating HR response.
Zobrazit více v PubMed
Shinohara A., Ogawa H., Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992;69:457–470. doi: 10.1016/0092-8674(92)90447-K. PubMed DOI
Aboussekhra A., Chanet R., Adjiri A., Fabre F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 1992;12:3224–3234. doi: 10.1128/mcb.12.7.3224-3234.1992. PubMed DOI PMC
Markmann-Mulisch U., Wendeler E., Zobell O., Schween G., Steinbiss H.-H., Reiss B. Differential Requirements for RAD51 in Physcomitrella patens and Arabidopsis thaliana Development and DNA Damage Repair. Plant Cell. 2007;19:3080–3089. doi: 10.1105/tpc.107.054049. PubMed DOI PMC
Suwaki N., Klare K., Tarsounas M. RAD51 paralogs: Roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin. Cell Dev. Biol. 2011;22:898–905. doi: 10.1016/j.semcdb.2011.07.019. PubMed DOI
Bleuyard J.-Y., Gallego M.E., Savigny F., White C.I. Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J. 2004;41:533–545. doi: 10.1111/j.1365-313X.2004.02318.x. PubMed DOI
Bonilla B., Hengel S.R., Grundy M.K., Bernstein K.A. RAD51 Gene Family Structure and Function. Annu. Rev. Genet. 2020;54:25–46. doi: 10.1146/annurev-genet-021920-092410. PubMed DOI PMC
Lin Z., Kong H., Nei M., Ma H. Origins and evolution of the recA / RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer. Proc. Natl. Acad. Sci. USA. 2006;103:10328–10333. doi: 10.1073/pnas.0604232103. PubMed DOI PMC
Markmann-Mulisch U., Hadi M.Z., Koepchen K., Alonso J.C., Russo V.E.A., Schell J., Reiss B. The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms. Proc. Natl. Acad. Sci. USA. 2002;99:2959–2964. doi: 10.1073/pnas.032668199. PubMed DOI PMC
Schaefer D., Delacote F., Charlot F., Vrielynck N., Guyon-Debast A., Le Guin S., Neuhaus J., Doutriaux M., Nogué F. RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair. 2010;9:526–533. doi: 10.1016/j.dnarep.2010.02.001. PubMed DOI
Povirk L.F. DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: Bleomycin, neocarzinostatin and other enediynes. Mutat. Res. Mol. Mech. Mutagen. 1996;355:71–89. doi: 10.1016/0027-5107(96)00023-1. PubMed DOI
Schaefer D.G., Zryd J.-P. Efficient gene targeting in the moss Physcomitrella patens. Plant J. 1997;11:1195–1206. doi: 10.1046/j.1365-313X.1997.11061195.x. PubMed DOI
Charlot F., Chelysheva L., Kamisugi Y., Vrielynck N., Guyon A., Epert A., Le Guin S., Schaefer D.G., Cuming A.C., Grelon M., et al. RAD51B plays an essential role during somatic and meiotic recombination in Physcomitrella. Nucleic Acids Res. 2014;42:11965–11978. doi: 10.1093/nar/gku890. PubMed DOI PMC
Collonnier C., Epert A., Mara K., Maclot F., Guyon-Debast A., Charlot F., White C., Schaefer D.G., Nogué F. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. Plant Biotechnol. J. 2017;15:122–131. doi: 10.1111/pbi.12596. PubMed DOI PMC
Yokota Y., Sakamoto A.N. The Moss Physcomitrella patens Is Hyperresistant to DNA Double-Strand Breaks Induced by γ-Irradiation. Genes. 2018;9:76. doi: 10.3390/genes9020076. PubMed DOI PMC
Goodarzi A.A., Jeggo P., Lobrich M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair. 2010;9:1273–1282. doi: 10.1016/j.dnarep.2010.09.013. PubMed DOI
Jeggo P.A., Geuting V., Löbrich M. The role of homologous recombination in radiation-induced double-strand break repair. Radiother. Oncol. 2011;101:7–12. doi: 10.1016/j.radonc.2011.06.019. PubMed DOI
Goffová I., Vágnerová R., Peška V., Franek M., Havlová K., Holá M., Zachová D., Fojtová M., Cuming A., Kamisugi Y., et al. Roles ofRAD51 andRTEL1 in telomere andrDNAstability inPhyscomitrella patens. Plant J. 2019;98:1090–1105. doi: 10.1111/tpj.14304. PubMed DOI
Rensing S.A., Goffinet B., Meyberg R., Wu S.-Z., Bezanilla M. The Moss Physcomitrium (Physcomitrella) patens: A Model Organism for Non-Seed Plants. Plant Cell. 2020;32:1361–1376. doi: 10.1105/tpc.19.00828. PubMed DOI PMC
Holá M., Vágnerová R., Angelis K.J. Kleisin NSE4 of the SMC5/6 complex is necessary for DNA double strand break repair, but not for recovery from DNA damage in Physcomitrella (Physcomitrium patens) Plant Mol. Biol. 2021;107:355–364. doi: 10.1007/s11103-020-01115-7. PubMed DOI
Knight C.D., Cove D.J., Cumming A.C., Quatrano R.S. Molecular Plant Biology Vol 2. Practical Approach. Oxford University Press; Oxford, UK: 2002. Moss Gene Technology, Chapter 14.
Holá M., Vágnerová R., Angelis K. Mutagenesis during plant responses to UVB radiation. Plant Physiol. Biochem. 2015;93:29–33. doi: 10.1016/j.plaphy.2014.12.013. PubMed DOI
Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: Version II. Plant. Mol. Biol. Rep. 1983;1:19–21. doi: 10.1007/BF02712670. DOI
Holá M., Kozák J., Vágnerová R., Angelis K.J. Genotoxin Induced Mutagenesis in the Model PlantPhyscomitrella patens. BioMed Res. Int. 2013;2013:535049. doi: 10.1155/2013/535049. PubMed DOI PMC
Angelis K.J., Dusinská M., Collins A.R. Single Cell Gel Electrophoresis: Detection of DNA Damage at Different Levels of Sensitivity. Electrophoresis. 1999;20:2133–2138. doi: 10.1002/(SICI)1522-2683(19990701)20:10<2133::AID-ELPS2133>3.0.CO;2-Q. PubMed DOI
Chintapalli S.V., Bhardwaj G., Babu J., Hadjiyianni L., Hong Y., Todd G.K., Boosalis C.A., Zhang Z., Zhou X., Ma H., et al. Reevaluation of the evolutionary events within recA/RAD51 phylogeny. BMC Genom. 2013;14:240. doi: 10.1186/1471-2164-14-240. PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Madeira F., Pearce M., Tivey A.R.N., Basutkar P., Lee J., Edbali O., Madhusoodanan N., Kolesnikov A., Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50:W276–W279. doi: 10.1093/nar/gkac240. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Letunic I., Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC
Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–D1186. doi: 10.1093/nar/gkr944. PubMed DOI PMC
Yokoyama H., Sarai N., Kagawa W., Enomoto R., Shibata T., Kurumizaka H., Yokoyama S. Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex. Nucleic Acids Res. 2004;32:2556–2565. doi: 10.1093/nar/gkh578. PubMed DOI PMC