The Phenotype of Physcomitrium patens SMC6 Mutant with Interrupted Hinge Interactions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-05095S
Czech Science Foundation
GA23-05284S)
Czech Science Foundation
PubMed
41010035
PubMed Central
PMC12469541
DOI
10.3390/genes16091091
PII: genes16091091
Knihovny.cz E-zdroje
- Klíčová slova
- DSB repair, Physcomitrium patens SMC5/6, gene targeting, hinge domain, mutagenesis, protein–protein interactions, protonemata development, rDNA stability,
- MeSH
- chromozomální proteiny, nehistonové * genetika MeSH
- CRISPR-Cas systémy MeSH
- dvouřetězcové zlomy DNA MeSH
- fenotyp MeSH
- mechy * genetika metabolismus MeSH
- mutace MeSH
- proteiny buněčného cyklu * genetika metabolismus MeSH
- rostlinné proteiny * genetika metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromozomální proteiny, nehistonové * MeSH
- proteiny buněčného cyklu * MeSH
- rostlinné proteiny * MeSH
Background/Objectives: The Structural Maintenance of Chromosomes (SMC) proteins form essential heterocomplexes for the preservation of DNA structure and its functions, and hence cell viability. The SMC5/6 dimer is assembled by direct interactions of ATP heads via the kleisin NSE4 bridge and by SMC hinges. The structure might be interrupted by a single point mutation within a conserved motif of the SMC6-hinge. We describe the phenomena associated with the impairment of the SMC5/6 complex with morphology, repair of DNA double strand breaks (DSB), mutagenesis, recombination and gene targeting (GT) in the moss Physcomitrium patens (P. patens). Methods: Using CRISPR/Cas9-directed oligonucleotide replacement, we have introduced two close G to R point mutations in the hinge domain of SMC6 of P. patens and show that both mutations are not toxic and allow viability of mutant lines. Results: The G514R mutation fully prevents the interaction of SMC6 not only with SMC5, but also with NSE5 and NSE6, while the mutation at G517R has no effect. The Ppsmc6_G514R line has aberrant morphology, spontaneous and bleomycin-induced mutagenesis, and maintenance of the number of rDNA copies. The most unique feature is the interference with gene targeting (GT), which is completely abolished. In contrast, the Ppsmc6_G517R line is close to WT in many aspects. Surprisingly, both mutations have no direct effect on the rate of DSB repair in dividing and differentiated cells. Conclusions: Abolished interactions of SMC6 with SMC5 and NSE5,6 partners, which allow DSB repair, but impair other repair and recombination functions, suggests also regulatory role for SMC6.
Zobrazit více v PubMed
Palecek J., Vidot S., Feng M., Doherty A.J., Lehmann A.R. The Smc5-Smc6 DNA Repair Complex. Bridging of the Smc5-Smc6 Heads by the KLEISIN, Nse4, and Non-Kleisin Subunits. J. Biol. Chem. 2006;281:36952–36959. doi: 10.1074/jbc.M608004200. PubMed DOI
Alt A., Dang H.Q., Wells O.S., Polo L.M., Smith M.A., McGregor G.A., Welte T., Lehmann A.R., Pearl L.H., Murray J.M., et al. Specialized Interfaces of Smc5/6 Control Hinge Stability and DNA Association. Nat. Commun. 2017;8:14011. doi: 10.1038/ncomms14011. PubMed DOI PMC
Vondrova L., Kolesar P., Adamus M., Nociar M., Oliver A.W., Palecek J.J. A Role of the Nse4 Kleisin and Nse1/Nse3 KITE Subunits in the ATPase Cycle of SMC5/6. Sci. Rep. 2020;10:9694. doi: 10.1038/s41598-020-66647-w. PubMed DOI PMC
Li Q., Zhang J., Haluska C., Zhang X., Wang L., Liu G., Wang Z., Jin D., Cheng T., Wang H., et al. Cryo-EM Structures of Smc5/6 in Multiple States Reveal Its Assembly and Functional Mechanisms. Nat. Struct. Mol. Biol. 2024;31:1532–1542. doi: 10.1038/s41594-024-01319-1. PubMed DOI PMC
Shintomi K., Hirano T. How Are Cohesin Rings Opened and Closed? Trends Biochem. Sci. 2007;32:154–157. doi: 10.1016/j.tibs.2007.02.002. PubMed DOI
Kurze A., Michie K.A., Dixon S.E., Mishra A., Itoh T., Khalid S., Strmecki L., Shirahige K., Haering C.H., Löwe J., et al. A Positively Charged Channel within the Smc1/Smc3 Hinge Required for Sister Chromatid Cohesion. EMBO J. 2011;30:364–378. doi: 10.1038/emboj.2010.315. PubMed DOI PMC
Griese J.J., Witte G., Hopfner K.-P. Structure and DNA Binding Activity of the Mouse Condensin Hinge Domain Highlight Common and Diverse Features of SMC Proteins. Nucleic Acids Res. 2010;38:3454–3465. doi: 10.1093/nar/gkq038. PubMed DOI PMC
Uhlmann F. SMC Complexes: From DNA to Chromosomes. Nat. Rev. Mol. Cell Biol. 2016;17:399–412. doi: 10.1038/nrm.2016.30. PubMed DOI
Hirano T. Condensin-Based Chromosome Organization from Bacteria to Vertebrates. Cell. 2016;164:847–857. doi: 10.1016/j.cell.2016.01.033. PubMed DOI
Sergeant J., Taylor E., Palecek J., Fousteri M., Andrews E.A., Sweeney S., Shinagawa H., Watts F.Z., Lehmann A.R. Composition and Architecture of the Schizosaccharomyces Pombe Rad18 (Smc5-6) Complex. Mol. Cell. Biol. 2005;25:172–184. doi: 10.1128/MCB.25.1.172-184.2005. PubMed DOI PMC
Lelkes E., Jemelková J., Holá M., Štefanovie B., Kolesár P., Vágnerová R., Dvořák Tomaštíková E., Pecinka A., Angelis K.J., Paleček J.J. Characterization of the Conserved Features of the NSE6 Subunit of the Physcomitrium patens SMC5/6 Complex. Plant J. 2023;115:1084–1099. doi: 10.1111/tpj.16282. PubMed DOI
Vaculíková J., Holá M., Králová B., Lelkes E., Štefanovie B., Vágnerová R., Angelis K.J., Paleček J.J. NSE5 Subunit Interacts with Distant Regions of the SMC Arms in the Physcomitrium patens SMC5/6 Complex. Plant J. 2024;119:1481–1493. doi: 10.1111/tpj.16869. PubMed DOI
Holá M., Vágnerová R., Angelis K.J. Kleisin NSE4 of the SMC5/6 Complex Is Necessary for DNA Double Strand Break Repair, but Not for Recovery from DNA Damage in Physcomitrella (Physcomitrium patens) Plant Mol. Biol. 2021;107:355–364. doi: 10.1007/s11103-020-01115-7. PubMed DOI
Knight C.D., Cove D.J., Cumming A.C., Quatrano R.S. Molecular Plant Biology: A Practical Approach. Volume 2 Oxford University Press; Oxford, UK: 2002. Moss Gene Technology. Chapter 14.
Holá M., Kozák J., Vágnerová R., Angelis K.J. Genotoxin Induced Mutagenesis in the Model Plant Physcomitrella patens. BioMed Res. Int. 2013;2013:535049. doi: 10.1155/2013/535049. PubMed DOI PMC
Rensing S.A., Lang D., Zimmer A.D., Terry A., Salamov A., Shapiro H., Nishiyama T., Perroud P.F., Lindquist E.A., Kamisugi Y., et al. The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science. 2008;319:64–69. doi: 10.1126/science.1150646. PubMed DOI
Cove D.J., Perroud P.-F., Charron A.J., McDaniel S.F., Khandelwal A., Quatrano R.S. Somatic Hybridization in the Moss Physcomitrella patens Using PEG-Induced Protoplast Fusion. Cold Spring Harb. Protoc. 2009;2009:pdb.prot5141. doi: 10.1101/pdb.prot5141. PubMed DOI
Cove D.J., Schild A., Ashton N.W., Hartmann E. Genetic and Physiological Studies of The Effect of Light on The Development of The Moss, Physcomitrella patens. Photochem. Photobiol. 1978;27:249–254. doi: 10.1111/j.1751-1097.1978.tb07596.x. DOI
Trouiller B., Schaefer D.G., Charlot F., Nogue F. MSH2 Is Essential for the Preservation of Genome Integrity and Prevents Homeologous Recombination in the Moss Physcomitrella patens. Nucleic Acids Res. 2006;34:232–242. doi: 10.1093/nar/gkj423. PubMed DOI PMC
Mallett D.R., Chang M., Cheng X., Bezanilla M. Efficient and Modular CRISPR-Cas9 Vector System for Physcomitrella patens. Plant Direct. 2019;3:e00168. doi: 10.1002/pld3.168. PubMed DOI PMC
Hudson J.J., Bednarova K., Kozakova L., Liao C., Guerineau M., Colnaghi R., Vidot S., Marek J., Bathula S.R., Lehmann A.R., et al. Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families. PLoS ONE. 2011;6:e17270. doi: 10.1371/journal.pone.0017270. PubMed DOI PMC
Dellaporta S.L., Wood J., Hicks J.B. A Plant DNA Minipreparation: Version II. Plant Mol. Biol. Rep. 1983;1:19–21. doi: 10.1007/bf02712670. DOI
Trouiller B., Charlot F., Choinard S., Schaefer D.G., Nogue F. Comparison of Gene Targeting Efficiencies in Two Mosses Suggests That It Is a Conserved Feature of Bryophyte Transformation. Biotechnol. Lett. 2007;29:1591–1598. doi: 10.1007/s10529-007-9423-5. PubMed DOI
Liu Y.-C., Vidali L. Efficient Polyethylene Glycol (PEG) Mediated Transformation of the Moss Physcomitrella patens. J. Vis. Exp. 2011:e2560. doi: 10.3791/2560. PubMed DOI PMC
Goodarzi A.A., Jeggo P., Lobrich M. The Influence of Heterochromatin on DNA Double Strand Break Repair: Getting the Strong, Silent Type to Relax. DNA Repair. 2010;9:1273–1282. doi: 10.1016/j.dnarep.2010.09.013. PubMed DOI
Peng X.P., Lim S., Li S., Marjavaara L., Chabes A., Zhao X. Acute Smc5/6 Depletion Reveals Its Primary Role in rDNA Replication by Restraining Recombination at Fork Pausing Sites. PLoS Genet. 2018;14:e1007129. doi: 10.1371/journal.pgen.1007129. PubMed DOI PMC
Hola M., Vagnerova R., Angelis K.J. Mutagenesis during Plant Responses to UVB Radiation. Plant Physiol. Biochem. 2015;93:29–33. doi: 10.1016/j.plaphy.2014.12.013. PubMed DOI
Kushnirov V.V. Rapid and Reliable Protein Extraction from Yeast. Yeast. 2000;16:857–860. doi: 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B. PubMed DOI
Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500. doi: 10.1038/s41586-024-07487-w. PubMed DOI PMC