The Phenotype of Physcomitrium patens SMC6 Mutant with Interrupted Hinge Interactions

. 2025 Sep 16 ; 16 (9) : . [epub] 20250916

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41010035

Grantová podpora
GA20-05095S Czech Science Foundation
GA23-05284S) Czech Science Foundation

Background/Objectives: The Structural Maintenance of Chromosomes (SMC) proteins form essential heterocomplexes for the preservation of DNA structure and its functions, and hence cell viability. The SMC5/6 dimer is assembled by direct interactions of ATP heads via the kleisin NSE4 bridge and by SMC hinges. The structure might be interrupted by a single point mutation within a conserved motif of the SMC6-hinge. We describe the phenomena associated with the impairment of the SMC5/6 complex with morphology, repair of DNA double strand breaks (DSB), mutagenesis, recombination and gene targeting (GT) in the moss Physcomitrium patens (P. patens). Methods: Using CRISPR/Cas9-directed oligonucleotide replacement, we have introduced two close G to R point mutations in the hinge domain of SMC6 of P. patens and show that both mutations are not toxic and allow viability of mutant lines. Results: The G514R mutation fully prevents the interaction of SMC6 not only with SMC5, but also with NSE5 and NSE6, while the mutation at G517R has no effect. The Ppsmc6_G514R line has aberrant morphology, spontaneous and bleomycin-induced mutagenesis, and maintenance of the number of rDNA copies. The most unique feature is the interference with gene targeting (GT), which is completely abolished. In contrast, the Ppsmc6_G517R line is close to WT in many aspects. Surprisingly, both mutations have no direct effect on the rate of DSB repair in dividing and differentiated cells. Conclusions: Abolished interactions of SMC6 with SMC5 and NSE5,6 partners, which allow DSB repair, but impair other repair and recombination functions, suggests also regulatory role for SMC6.

Zobrazit více v PubMed

Palecek J., Vidot S., Feng M., Doherty A.J., Lehmann A.R. The Smc5-Smc6 DNA Repair Complex. Bridging of the Smc5-Smc6 Heads by the KLEISIN, Nse4, and Non-Kleisin Subunits. J. Biol. Chem. 2006;281:36952–36959. doi: 10.1074/jbc.M608004200. PubMed DOI

Alt A., Dang H.Q., Wells O.S., Polo L.M., Smith M.A., McGregor G.A., Welte T., Lehmann A.R., Pearl L.H., Murray J.M., et al. Specialized Interfaces of Smc5/6 Control Hinge Stability and DNA Association. Nat. Commun. 2017;8:14011. doi: 10.1038/ncomms14011. PubMed DOI PMC

Vondrova L., Kolesar P., Adamus M., Nociar M., Oliver A.W., Palecek J.J. A Role of the Nse4 Kleisin and Nse1/Nse3 KITE Subunits in the ATPase Cycle of SMC5/6. Sci. Rep. 2020;10:9694. doi: 10.1038/s41598-020-66647-w. PubMed DOI PMC

Li Q., Zhang J., Haluska C., Zhang X., Wang L., Liu G., Wang Z., Jin D., Cheng T., Wang H., et al. Cryo-EM Structures of Smc5/6 in Multiple States Reveal Its Assembly and Functional Mechanisms. Nat. Struct. Mol. Biol. 2024;31:1532–1542. doi: 10.1038/s41594-024-01319-1. PubMed DOI PMC

Shintomi K., Hirano T. How Are Cohesin Rings Opened and Closed? Trends Biochem. Sci. 2007;32:154–157. doi: 10.1016/j.tibs.2007.02.002. PubMed DOI

Kurze A., Michie K.A., Dixon S.E., Mishra A., Itoh T., Khalid S., Strmecki L., Shirahige K., Haering C.H., Löwe J., et al. A Positively Charged Channel within the Smc1/Smc3 Hinge Required for Sister Chromatid Cohesion. EMBO J. 2011;30:364–378. doi: 10.1038/emboj.2010.315. PubMed DOI PMC

Griese J.J., Witte G., Hopfner K.-P. Structure and DNA Binding Activity of the Mouse Condensin Hinge Domain Highlight Common and Diverse Features of SMC Proteins. Nucleic Acids Res. 2010;38:3454–3465. doi: 10.1093/nar/gkq038. PubMed DOI PMC

Uhlmann F. SMC Complexes: From DNA to Chromosomes. Nat. Rev. Mol. Cell Biol. 2016;17:399–412. doi: 10.1038/nrm.2016.30. PubMed DOI

Hirano T. Condensin-Based Chromosome Organization from Bacteria to Vertebrates. Cell. 2016;164:847–857. doi: 10.1016/j.cell.2016.01.033. PubMed DOI

Sergeant J., Taylor E., Palecek J., Fousteri M., Andrews E.A., Sweeney S., Shinagawa H., Watts F.Z., Lehmann A.R. Composition and Architecture of the Schizosaccharomyces Pombe Rad18 (Smc5-6) Complex. Mol. Cell. Biol. 2005;25:172–184. doi: 10.1128/MCB.25.1.172-184.2005. PubMed DOI PMC

Lelkes E., Jemelková J., Holá M., Štefanovie B., Kolesár P., Vágnerová R., Dvořák Tomaštíková E., Pecinka A., Angelis K.J., Paleček J.J. Characterization of the Conserved Features of the NSE6 Subunit of the Physcomitrium patens SMC5/6 Complex. Plant J. 2023;115:1084–1099. doi: 10.1111/tpj.16282. PubMed DOI

Vaculíková J., Holá M., Králová B., Lelkes E., Štefanovie B., Vágnerová R., Angelis K.J., Paleček J.J. NSE5 Subunit Interacts with Distant Regions of the SMC Arms in the Physcomitrium patens SMC5/6 Complex. Plant J. 2024;119:1481–1493. doi: 10.1111/tpj.16869. PubMed DOI

Holá M., Vágnerová R., Angelis K.J. Kleisin NSE4 of the SMC5/6 Complex Is Necessary for DNA Double Strand Break Repair, but Not for Recovery from DNA Damage in Physcomitrella (Physcomitrium patens) Plant Mol. Biol. 2021;107:355–364. doi: 10.1007/s11103-020-01115-7. PubMed DOI

Knight C.D., Cove D.J., Cumming A.C., Quatrano R.S. Molecular Plant Biology: A Practical Approach. Volume 2 Oxford University Press; Oxford, UK: 2002. Moss Gene Technology. Chapter 14.

Holá M., Kozák J., Vágnerová R., Angelis K.J. Genotoxin Induced Mutagenesis in the Model Plant Physcomitrella patens. BioMed Res. Int. 2013;2013:535049. doi: 10.1155/2013/535049. PubMed DOI PMC

Rensing S.A., Lang D., Zimmer A.D., Terry A., Salamov A., Shapiro H., Nishiyama T., Perroud P.F., Lindquist E.A., Kamisugi Y., et al. The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science. 2008;319:64–69. doi: 10.1126/science.1150646. PubMed DOI

Cove D.J., Perroud P.-F., Charron A.J., McDaniel S.F., Khandelwal A., Quatrano R.S. Somatic Hybridization in the Moss Physcomitrella patens Using PEG-Induced Protoplast Fusion. Cold Spring Harb. Protoc. 2009;2009:pdb.prot5141. doi: 10.1101/pdb.prot5141. PubMed DOI

Cove D.J., Schild A., Ashton N.W., Hartmann E. Genetic and Physiological Studies of The Effect of Light on The Development of The Moss, Physcomitrella patens. Photochem. Photobiol. 1978;27:249–254. doi: 10.1111/j.1751-1097.1978.tb07596.x. DOI

Trouiller B., Schaefer D.G., Charlot F., Nogue F. MSH2 Is Essential for the Preservation of Genome Integrity and Prevents Homeologous Recombination in the Moss Physcomitrella patens. Nucleic Acids Res. 2006;34:232–242. doi: 10.1093/nar/gkj423. PubMed DOI PMC

Mallett D.R., Chang M., Cheng X., Bezanilla M. Efficient and Modular CRISPR-Cas9 Vector System for Physcomitrella patens. Plant Direct. 2019;3:e00168. doi: 10.1002/pld3.168. PubMed DOI PMC

Hudson J.J., Bednarova K., Kozakova L., Liao C., Guerineau M., Colnaghi R., Vidot S., Marek J., Bathula S.R., Lehmann A.R., et al. Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families. PLoS ONE. 2011;6:e17270. doi: 10.1371/journal.pone.0017270. PubMed DOI PMC

Dellaporta S.L., Wood J., Hicks J.B. A Plant DNA Minipreparation: Version II. Plant Mol. Biol. Rep. 1983;1:19–21. doi: 10.1007/bf02712670. DOI

Trouiller B., Charlot F., Choinard S., Schaefer D.G., Nogue F. Comparison of Gene Targeting Efficiencies in Two Mosses Suggests That It Is a Conserved Feature of Bryophyte Transformation. Biotechnol. Lett. 2007;29:1591–1598. doi: 10.1007/s10529-007-9423-5. PubMed DOI

Liu Y.-C., Vidali L. Efficient Polyethylene Glycol (PEG) Mediated Transformation of the Moss Physcomitrella patens. J. Vis. Exp. 2011:e2560. doi: 10.3791/2560. PubMed DOI PMC

Goodarzi A.A., Jeggo P., Lobrich M. The Influence of Heterochromatin on DNA Double Strand Break Repair: Getting the Strong, Silent Type to Relax. DNA Repair. 2010;9:1273–1282. doi: 10.1016/j.dnarep.2010.09.013. PubMed DOI

Peng X.P., Lim S., Li S., Marjavaara L., Chabes A., Zhao X. Acute Smc5/6 Depletion Reveals Its Primary Role in rDNA Replication by Restraining Recombination at Fork Pausing Sites. PLoS Genet. 2018;14:e1007129. doi: 10.1371/journal.pgen.1007129. PubMed DOI PMC

Hola M., Vagnerova R., Angelis K.J. Mutagenesis during Plant Responses to UVB Radiation. Plant Physiol. Biochem. 2015;93:29–33. doi: 10.1016/j.plaphy.2014.12.013. PubMed DOI

Kushnirov V.V. Rapid and Reliable Protein Extraction from Yeast. Yeast. 2000;16:857–860. doi: 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B. PubMed DOI

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500. doi: 10.1038/s41586-024-07487-w. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...