NSE5 subunit interacts with distant regions of the SMC arms in the Physcomitrium patens SMC5/6 complex

. 2024 Aug ; 119 (3) : 1481-1493. [epub] 20240610

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38858852

Grantová podpora
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/R/1142/2021 Masarykova Univerzita
GA20-05095S Grantová Agentura České Republiky

Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.

Zobrazit více v PubMed

Adamus, M., Lelkes, E., Potesil, D., Ganji, S.R., Kolesar, P., Zabrady, K. et al. (2020) Molecular insights into the architecture of the human SMC5/6 complex. Journal of Molecular Biology, 432, 3820–3837.

Alt, A., Dang, H.Q., Wells, O.S., Polo, L.M., Smith, M.A., McGregor, G.A. et al. (2017) Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nature Communications, 8, 14011.

Aragón, L. (2018) The Smc5/6 complex: new and old functions of the enigmatic long‐distance relative. Annual Review of Genetics, 52, 89–107.

Bürmann, F. & Löwe, J. (2023) Structural biology of SMC complexes across the tree of life. Current Opinion in Structural Biology, 80, 102598.

Collier, J.E., Lee, B.G., Roig, M.B., Yatskevich, S., Petela, N.J., Metson, J. et al. (2020) Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3. eLife, 9, e59560.

Collier, J.E. & Nasmyth, K.A. (2022) DNA passes through cohesin's hinge as well as its Smc3‐kleisin interface. eLife, 11, e80310.

Cove, D.J., Perroud, P.F., Charron, A.J., McDaniel, S.F., Khandelwal, A. & Quatrano, R.S. (2009) The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harbor Protocols, 2009, pdb.emo115.

Cove, D.J., Schild, A., Ashton, N.W. & Hartmann, E. (1978) Genetic and physiological studies of the effect of light on the development of the moss, Physcomitrella patens. Photochemistry and Photobiology, 27, 249–254.

Davidson, I.F., Bauer, B., Goetz, D., Tang, W., Wutz, G. & Peters, J.M. (2019) DNA loop extrusion by human cohesin. Science, 366, 1338–1345.

Davidson, I.F. & Peters, J.M. (2021) Genome folding through loop extrusion by SMC complexes. Nature Reviews Molecular Cell Biology, 22, 445–464.

Duan, X., Yang, Y., Chen, Y.H., Arenz, J., Rangi, G.K., Zhao, X. et al. (2009) Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5‐6 subcomplex and the hinge regions of Smc5 and Smc6. The Journal of Biological Chemistry, 284, 8507–8515.

Ganji, M., Shaltiel, I.A., Bisht, S., Kim, E., Kalichava, A., Haering, C.H. et al. (2018) Real‐time imaging of DNA loop extrusion by condensin. Science, 360, 102–105.

Gutierrez‐Escribano, P., Hormeno, S., Madariaga‐Marcos, J., Sole‐Soler, R., O'Reilly, F.J., Morris, K. et al. (2020) Purified Smc5/6 complex exhibits DNA substrate recognition and compaction. Molecular Cell, 80, 1039–1054.

Hallett, S.T., Campbell Harry, I., Schellenberger, P., Zhou, L., Cronin, N.B., Baxter, J. et al. (2022) Cryo‐EM structure of the Smc5/6 holo‐complex. Nucleic Acids Research, 50, 9505–9520.

Hassler, M., Shaltiel, I.A. & Haering, C.H. (2018) Towards a unified model of SMC complex function. Current Biology, 28, R1266–R1281.

Higashi, T.L., Pobegalov, G., Tang, M., Molodtsov, M.I. & Uhlmann, F. (2021) A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife, 10, e67530.

Holá, M., Vágnerová, R. & Angelis, K.J. (2021) Kleisin NSE4 of the SMC5/6 complex is necessary for DNA double strand break repair, but not for recovery from DNA damage in Physcomitrella (Physcomitrium patens). Plant Molecular Biology, 107, 355–364.

Hudson, J.J.R., Bednarova, K., Kozakova, L., Liao, C.Y., Guerineau, M., Colnaghi, R. et al. (2011) Interactions between the Nse3 and Nse4 components of the SMC5‐6 complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS One, 6, 14.

Lee, B.G., Merkel, F., Allegretti, M., Hassler, M., Cawood, C., Lecomte, L. et al. (2020) Cryo‐EM structures of holo condensin reveal a subunit flip‐flop mechanism. Nature Structural & Molecular Biology, 27, 743–751.

Lelkes, E., Jemelkova, J., Hola, M., Stefanovie, B., Kolesar, P., Vagnerova, R. et al. (2023) Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens SMC5/6 complex. Plant Journal, 115, 1084–1099.

Li, S., Yu, Y., Zheng, J., Miller‐Browne, V., Ser, Z., Kuang, H. et al. (2023) Molecular basis for Nse5‐6 mediated regulation of Smc5/6 functions. Proceedings of the National Academy of Sciences of the United States of America, 120, e2310924120.

Li, X., Liu, K., Li, F., Wang, J., Huang, H., Wu, J. et al. (2012) Structure of C‐terminal tandem BRCT repeats of Rtt107 protein reveals critical role in interaction with phosphorylated histone H2A during DNA damage repair. The Journal of Biological Chemistry, 287, 9137–9146.

Mahrik, L., Stefanovie, B., Maresova, A., Princova, J., Kolesar, P., Lelkes, E. et al. (2023) The SAGA histone acetyltransferase module targets SMC5/6 to specific genes. Epigenetics & Chromatin, 16, 6.

Mallett, D.R., Chang, M., Cheng, X. & Bezanilla, M. (2019) Efficient and modular CRISPR‐Cas9 vector system for Physcomitrella patens. Plant Direct, 3, e00168.

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. & Steinegger, M. (2022) ColabFold: making protein folding accessible to all. Nature Methods, 19, 679–682.

Oravcová, M. & Boddy, M.N. (2019) Recruitment, loading, and activation of the Smc5–Smc6 SUMO ligase. Current Genetics, 65, 669–676.

Oravcova, M., Nie, M.H., Zilio, N., Maeda, S., Jami‐Alahmadi, Y., Lazzerini‐Denchi, E. et al. (2022) The Nse5/6‐like SIMC1‐SLF2 complex localizes SMC5/6 to viral replication centers. eLife, 11, 37.

Palecek, J., Vidot, S., Feng, M., Doherty, A.J. & Lehmann, A.R. (2006) The SMC5‐6 DNA repair complex: bridging of the SMC5‐6 heads by the Kleisin, NSE4, and non‐Kleisin subunits. The Journal of Biological Chemistry, 281, 36952–36959.

Palecek, J.J. (2019) SMC5/6: multifunctional player in replication. Genes, 10, E7.

Palecek, J.J. & Gruber, S. (2015) Kite proteins: a superfamily of SMC/Kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure, 23, 2183–2190.

Peng, X.P., Lim, S., Li, S.B., Marjavaara, L., Chabes, A. & Zhao, X.L. (2018) Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genetics, 14, 20.

Petela, N.J., Gonzalez Llamazares, A., Dixon, S., Hu, B., Lee, B.G., Metson, J. et al. (2021) Folding of cohesin's coiled coil is important for Scc2/4‐induced association with chromosomes. eLife, 10, e67268.

Pradhan, B., Kanno, T., Umeda Igarashi, M., Loke, M.S., Baaske, M.D., Wong, J.S.K. et al. (2023) The Smc5/6 complex is a DNA loop‐extruding motor. Nature, 616, 843–848.

Räschle, M., Smeenk, G., Hansen, R.K., Temu, T., Oka, Y., Hein, M.Y. et al. (2015) DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross‐links. Science, 348, 1253671.

Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H. et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64–69.

Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. (2003) SWISS‐MODEL: an automated protein homology‐modeling server. Nucleic Acids Research, 31, 3381–3385.

Sergeant, J., Taylor, E., Palecek, J., Fousteri, M., Andrews, E., Sweeney, S. et al. (2005) Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5‐6) complex. Molecular and Cellular Biology, 25, 172–184.

Shi, Z.B., Gao, H.S., Bai, X.C. & Yu, H.T. (2020) Cryo‐EM structure of the human cohesin‐NIPBL‐DNA complex. Science, 368, 1454–1459.

Taschner, M., Basquin, J., Steigenberger, B., Schafer, I.B., Soh, Y.M., Basquin, C. et al. (2021) Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding. EMBO Journal, 40, 23.

Torres‐Rosell, J., Sunjevaric, I., De Piccoli, G., Sacher, M., Eckert‐Boulet, N., Reid, R. et al. (2007) The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biology, 9, 923–931.

Trouiller, B., Schaefer, D.G., Charlot, F. & Nogué, F. (2006) MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens. Nucleic Acids Research, 34, 232–242.

Uhlmann, F. (2016) SMC complexes: from DNA to chromosomes. Nature Reviews. Molecular Cell Biology, 17, 399–412.

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G. et al. (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Research, 50, D439–D444.

Vondrova, L., Kolesar, P., Adamus, M., Nociar, M., Oliver, A.W. & Palecek, J.J. (2020) A role of the Nse4 kleisin and Nse1/Nse3 KITE subunits in the ATPase cycle of SMC5/6. Scientific Reports, 10, 13.

Williams, J.S., Williams, R.S., Dovey, C.L., Guenther, G., Tainer, J.A. & Russell, P. (2010) gammaH2A binds Brc1 to maintain genome integrity during S‐phase. The EMBO Journal, 29, 1136–1148.

Yu, Y., Li, S., Ser, Z., Kuang, H., Than, T., Guan, D. et al. (2022) Cryo‐EM structure of DNA‐bound Smc5/6 reveals DNA clamping enabled by multi‐subunit conformational changes. Proceedings of the National Academy of Sciences of the United States of America, 119, e2202799119.

Yu, Y., Li, S.B., Ser, Z., Sanyal, T., Choi, K., Wan, B.B. et al. (2021) Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proceedings of the National Academy of Sciences of the United States of America, 118, 11.

Zabrady, K., Adamus, M., Vondrova, L., Liao, C., Skoupilova, H., Novakova, M. et al. (2016) Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Research, 44, 1064–1079.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Phenotype of Physcomitrium patens SMC6 Mutant with Interrupted Hinge Interactions

. 2025 Sep 16 ; 16 (9) : . [epub] 20250916

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...