Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
714850
H2020 European Research Council
LQ1601
Central European Institute of Technology
LTAUSA19060
INTER-EXCELLENCE
19-01536S
Grantová Agentura České Republiky
CEITEC-VUT-J-20-6514
Brno University of Technology
PhD talent scholarship
Brno City Municipality
IGA_PrF_2020_016
Palacký University Olomouc
VEGA 1/0639/18
Grant Agencies of the Slovak Republic
APVV-19-0087
Grant Agencies of the Slovak Republic
PubMed
33138227
PubMed Central
PMC7662825
DOI
10.3390/molecules25215021
PII: molecules25215021
Knihovny.cz E-zdroje
- Klíčová slova
- cobalt complexes, graphene, hybrid material, magneto-chemistry,
- MeSH
- chalkonoidy chemie MeSH
- grafit chemie MeSH
- kobalt chemie MeSH
- komplexní sloučeniny chemie MeSH
- ligandy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chalkonoidy MeSH
- grafit MeSH
- kobalt MeSH
- komplexní sloučeniny MeSH
- ligandy MeSH
Studying the properties of complex molecules on surfaces is still mostly an unexplored research area because the deposition of the metal complexes has many pitfalls. Herein, we probed the possibility to produce surface hybrids by depositing a Co(II)-based complex with chalcone ligands on chemical vapor deposition (CVD)-grown graphene by a wet-chemistry approach and by thermal sublimation under high vacuum. Samples were characterized by high-frequency electron spin resonance (HF-ESR), XPS, Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy, supported with density functional theory (DFT) and complete active space self-consistent field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations. This compound's rationale is its structure, with several aromatic rings for weak binding and possible favorable π-π stacking onto graphene. In contrast to expectations, we observed the formation of nanodroplets on graphene for a drop-cast sample and microcrystallites localized at grain boundaries and defects after thermal sublimation.
Zobrazit více v PubMed
Caneschi A., Gatteschi D., Sessoli R., Barra A.L., Brunei L.C., Guillot M. Alternating Current Susceptibility, High Field Magnetization, and Millimeter Band EPR Evidence for a Ground S=10 State in [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O. J. Am. Chem. Soc. 1991;113:5873–5874. doi: 10.1021/ja00015a057. DOI
Sessoli R., Gatteschi D., Tsai H.L., Hendrickson D.N., Schake A.R., Wang S., Vincent J.B., Christou G., Folting K. High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4] J. Am. Chem. Soc. 1993;115:1804–1816. doi: 10.1021/ja00058a027. DOI
Sessoli R., Gatteschi D., Caneschi A., Novak M.A. Magnetic bistability in a metal-ion cluster. Nature. 1993;365:141–143. doi: 10.1038/365141a0. DOI
Gatteschi D., Sessoli R., Villain J. Molecular Nanomagnets. 1st ed. Oxford University Press; Oxford, UK: 2007.
Neese F., Pantazis D.A. What is not required to make a single molecule magnet. Faraday Discuss. 2011;148:229–238. doi: 10.1039/C005256F. PubMed DOI
Ishikawa N., Sugita M., Ishikawa T., Koshihara S.Y., Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 2003;125:8694–8695. doi: 10.1021/ja029629n. PubMed DOI
Guo F.-S., Day B.M., Chen Y.-C., Tong M.-L., Mansikkamäki A., Layfield R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science. 2018;362:1400–1403. doi: 10.1126/science.aav0652. PubMed DOI
Wolf S.A. Spintronics: A Spin-Based Electronics Vision for the Future. Science. 2001;294:1488–1495. doi: 10.1126/science.1065389. PubMed DOI
Leuenberger M.N., Loss D. Quantum computing in molecular magnets. Nature. 2001;410:789–793. doi: 10.1038/35071024. PubMed DOI
Bogani L., Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008;7:179–186. doi: 10.1038/nmat2133. PubMed DOI
Barra A.L., Gatteschi D., Sessoli R. High-frequency EPR spectra of a molecular nanomagnet: Understanding quantum tunneling of the magnetization. Phys. Rev. B Condens. Matter Mater. Phys. 1997;56:8192–8198. doi: 10.1103/PhysRevB.56.8192. DOI
Barra A.L., Gatteschi D., Sessoli R. High-frequency EPR spectra of [Fe8O2(OH)12(taCn)6]Br8: A critical appraisal of the barrier for the reorientation of the magnetization in single-molecule magnets. Chem. Eur. J. 2000;6:1608–1614. doi: 10.1002/(SICI)1521-3765(20000502)6:9<1608::AID-CHEM1608>3.0.CO;2-8. PubMed DOI
Barra A.L. High-frequency EPR spectroscopy of single-molecule magnets: A case study. Appl. Magn. Reson. 2001;21:619–628. doi: 10.1007/BF03162434. DOI
Krzystek J., Ozarowski A., Zvyagin S.A., Telser J. High spin Co(I): High-frequency and -field EPR spectroscopy of CoX(PPh 3) 3 (X = Cl, Br) Inorg. Chem. 2012;51:4954–4964. doi: 10.1021/ic202185x. PubMed DOI
Rechkemmer Y., Fischer J.E., Marx R., Dörfel M., Neugebauer P., Horvath S., Gysler M., Brock-Nannestad T., Frey W., Reid M.F., et al. Comprehensive Spectroscopic Determination of the Crystal Field Splitting in an Erbium Single-Ion Magnet. J. Am. Chem. Soc. 2015;137:13114–13120. doi: 10.1021/jacs.5b08344. PubMed DOI
Realista S., Fitzpatrick A.J., Santos G., Ferreira L.P., Barroso S., Pereira L.C.J., Bandeira N.A.G., Neugebauer P., Hrubý J., Morgan G.G., et al. A Mn(III) single ion magnet with tridentate Schiff-base ligands. Dalton Trans. 2016;45:12301–12307. doi: 10.1039/C6DT02538B. PubMed DOI
Kultaeva A., Biktagirov T., Neugebauer P., Bamberger H., Bergmann J., Van Slageren J., Krautscheid H., Pöppl A. Multifrequency EPR, SQUID, and DFT Study of Cupric Ions and Their Magnetic Coupling in the Metal-Organic Framework Compound ∞3[Cu(prz-trz-ia)] J. Phys. Chem. C. 2018;122:26642–26651. doi: 10.1021/acs.jpcc.8b08327. DOI
Neugebauer P., Bloos D., Marx R., Lutz P., Kern M., Aguilà D., Vaverka J., Laguta O., Dietrich C., Clérac R., et al. Ultra-broadband EPR spectroscopy in field and frequency domains. Phys. Chem. Chem. Phys. 2018;20:15528–15534. doi: 10.1039/C7CP07443C. PubMed DOI
Bucinsky L., Breza M., Malček M., Powers D.C., Hwang S.J., Krzystek J., Nocera D.G., Telser J. High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr IV Siloxide Complex and Computational Studies of Related Cr IV L 4 Systems. Inorg. Chem. 2019;58:4907–4920. doi: 10.1021/acs.inorgchem.8b03512. PubMed DOI
Hrubý J., Dvořák D., Squillantini L., Mannini M., van Slageren J., Herchel R., Nemec I., Neugebauer P. Co(ii)-Based single-ion magnets with 1,1’-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Trans. 2020;2:11697–11707. doi: 10.1039/D0DT01512A. PubMed DOI
Hrubý J., Santana V.T., Kostiuk D., Bouček M., Lenz S., Kern M., Šiffalovič P., van Slageren J., Neugebauer P. A graphene-based hybrid material with quantum bits prepared by the double Langmuir–Schaefer method. RSC Adv. 2019;9:24066–24073. doi: 10.1039/C9RA04537F. PubMed DOI PMC
Marie L.S., El Fatimy A., Hrubý J., Nemec I., Hunt J., Myers-Ward R., Gaskill D.K., Kruskopf M., Yang Y., Elmquist R., et al. Nanostructured graphene for nanoscale electron paramagnetic resonance spectroscopy. J. Phys. Mater. 2020;3:014013. doi: 10.1088/2515-7639/ab6af8. DOI
Ciccullo F., Glaser M., Sättele M.S., Lenz S., Neugebauer P., Rechkemmer Y., Van Slageren J., Casu M.B. Thin film properties and stability of a potential molecular quantum bit based on copper(ii) J. Mater. Chem. C. 2018;6:8028–8034. doi: 10.1039/C8TC02610F. DOI
Holmberg R.J., Murugesu M. Adhering magnetic molecules to surfaces. J. Mater. Chem. C. 2015;3:11986–11998. doi: 10.1039/C5TC03225C. DOI
Caneschi A., Gatteschi D., Totti F. Molecular magnets and surfaces: A promising marriage. A DFT insight. Coord. Chem. Rev. 2015;289–290:357–378. doi: 10.1016/j.ccr.2014.11.016. DOI
Mannini M., Pineider F., Sainctavit P., Danieli C., Otero E., Sciancalepore C., Talarico A.M., Arrio M.A., Cornia A., Gatteschi D., et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 2009;8:194–197. doi: 10.1038/nmat2374. PubMed DOI
Saywell A., Magnano G., Satterley C.J., Perdigão L.M.A., Britton A.J., Taleb N., Del Carmen Giménez-López M., Champness N.R., O’Shea J.N., Beton P.H. Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat. Commun. 2010;1:75. doi: 10.1038/ncomms1075. PubMed DOI
Rozbořil J., Rechkemmer Y., Bloos D., Münz F., Wang C.N., Neugebauer P., Čechal J., Novák J., van Slageren J. Magneto-optical investigations of molecular nanomagnet monolayers. Dalton Trans. 2016;45:7555–7558. doi: 10.1039/C6DT00839A. PubMed DOI
Malavolti L., Lanzilotto V., Ninova S., Poggini L., Cimatti I., Cortigiani B., Margheriti L., Chiappe D., Otero E., Sainctavit P., et al. Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets. Nano Lett. 2015;15:535–541. doi: 10.1021/nl503925h. PubMed DOI
Kiefl E., Mannini M., Bernot K., Yi X., Amato A., Leviant T., Magnani A., Prokscha T., Suter A., Sessoli R., et al. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet. ACS Nano. 2016;10:5663–5669. doi: 10.1021/acsnano.6b01817. PubMed DOI
Lanzilotto V., Malavolti L., Ninova S., Cimatti I., Poggini L., Cortigiani B., Mannini M., Totti F., Cornia A., Sessoli R. The Challenge of Thermal Deposition of Coordination Compounds: Insight into the Case of an Fe4 Single Molecule Magnet. Chem. Mater. 2016;28:7693–7702. doi: 10.1021/acs.chemmater.6b02696. DOI
Cañon-Mancisidor W., Miralles S.G., Baldoví J.J., Espallargas G.M., Gaita-Ariño A., Coronado E. Sublimable Single Ion Magnets Based on Lanthanoid Quinolinate Complexes: The Role of Intermolecular Interactions on Their Thermal Stability. Inorg. Chem. 2018;57:14170–14177. doi: 10.1021/acs.inorgchem.8b02080. PubMed DOI
Miralles S.G., Bedoya-Pinto A., Baldoví J.J., Cañon-Mancisidor W., Prado Y., Prima-Garcia H., Gaita-Ariño A., Mínguez Espallargas G., Hueso L.E., Coronado E. Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes. Chem. Sci. 2018;9:199–208. doi: 10.1039/C7SC03463F. PubMed DOI PMC
Margheriti L., Mannini M., Sorace L., Gorini L., Gatteschi D., Caneschi A., Chiappe D., Moroni R., de Mongeot F.B., Cornia A., et al. Thermal Deposition of Intact Tetrairon(III) Single-Molecule Magnets in High-Vacuum Conditions. Small. 2009;5:1460–1466. doi: 10.1002/smll.200801594. PubMed DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Du X., Skachko I., Andrei E.Y., Barker A. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008;3:491–495. doi: 10.1038/nnano.2008.199. PubMed DOI
Neugebauer P., Orlita M., Faugeras C., Barra A.L., Potemski M. How perfect can graphene be? Phys. Rev. Lett. 2009;103:136403. doi: 10.1103/PhysRevLett.103.136403. PubMed DOI
Lee C., Wei X., Kysar J.W., Hone J. Measurement of the Elastic of Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI
Seol J.H., Jo I., Moore A.L., Lindsay L., Aitken Z.H., Pettes M.T., Li X., Yao Z., Huang R., Broido D., et al. Two-dimensional phonon transport in supported graphene. Science. 2010;328:213–216. doi: 10.1126/science.1184014. PubMed DOI
Novoselov K.S.S., Geim A.K.K., Morozov S.V.V., Jiang D., Zhang Y., Dubonos S.V.V., Grigorieva I.V.V., Firsov A.A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Warner J.H., Mukai M., Kirkland A.I. Atomic structure of ABC rhombohedral stacked trilayer graphene. ACS Nano. 2012;6:5680–5686. doi: 10.1021/nn3017926. PubMed DOI
VanMil B.L., Myers-Ward R.L., Tedesco J.L., Eddy C.R., Jr., Jernigan G.G., Culbertson J.C., Campbell P.M., McCrate J.M., Kitt S.A., Gaskill D.K. Graphene Formation on SiC Substrates. Mater. Sci. Forum. 2009;615–617:211–214. doi: 10.4028/www.scientific.net/MSF.615-617.211. DOI
Coleman J.N., Lotya M., O’Neill A., Bergin S.D., King P.J., Khan U., Young K., Gaucher A., De S., Smith R.J., et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331:568–571. doi: 10.1126/science.1194975. PubMed DOI
Bae S., Kim H., Lee Y., Xu X., Park J.S., Zheng Y., Balakrishnan J., Lei T., Ri Kim H., Song Y., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010;5:574–578. doi: 10.1038/nnano.2010.132. PubMed DOI
Atanasov M., Aravena D., Suturina E., Bill E., Maganas D., Neese F. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 2015;289–290:177–214. doi: 10.1016/j.ccr.2014.10.015. DOI
SHAPE, Version 2.1. University of Barcelona; Barcelona, Spain: 2013.
Alvarez S. Polyhedra in (inorganic) chemistry. Dalton Trans. 2005;13:2209–2233. doi: 10.1039/b503582c. PubMed DOI
Mankad V., Gupta S.K., Jha P.K., Ovsyuk N.N., Kachurin G.A. Low-frequency Raman scattering from Si/Ge nanocrystals in different matrixes caused by acoustic phonon quantization. J. Appl. Phys. 2012;112:54318. doi: 10.1063/1.4747933. DOI
Spizzirri P.G., Fang J.H., Rubanov S., Gauja E., Prawer S. Nano-Raman spectroscopy of silicon surfaces. arXiv. 20101002.2692
Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Akula S., Parthiban V., Peera S.G., Singh B.P., Dhakate S.R., Sahu A.K. Simultaneous Co-Doping of Nitrogen and Fluorine into MWCNTs: An In-Situ Conversion to Graphene Like Sheets and Its Electro-Catalytic Activity toward Oxygen Reduction Reaction. J. Electrochem. Soc. 2017;164:F568–F576. doi: 10.1149/2.0501706jes. DOI
Fiedler R., Herzschuh R. An XPS investigation of the effects of heat treatment on the chlorine surface chemistry of some lignites. Fuel. 1993;72:1501–1505. doi: 10.1016/0016-2361(93)90007-O. DOI
Poneti G., Mannini M., Cortigiani B., Poggini L., Sorace L., Otero E., Sainctavit P., Sessoli R., Dei A. Magnetic and spectroscopic investigation of thermally and optically driven valence tautomerism in thioether-bridged dinuclear cobalt-dioxolene complexes. Inorg. Chem. 2013;52:11798–11805. doi: 10.1021/ic4011949. PubMed DOI
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI
Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI
Hussain T., Siddiqui H.L., Zia-ur-Rehman M., Masoom Yasinzai M., Parvez M. Anti-oxidant, anti-fungal and anti-leishmanial activities of novel 3-[4-(1H-imidazol-1-yl) phenyl]prop-2-en-1-ones. Eur. J. Med. Chem. 2009;44:4654–4660. doi: 10.1016/j.ejmech.2009.06.038. PubMed DOI
Masaryk L., Moncol J., Herchel R., Nemec I. Halogen Bonding in New Dichloride-Cobalt(II) Complex with Iodo Substituted Chalcone Ligands. Crystals. 2020;10:354. doi: 10.3390/cryst10050354. DOI
Shirley D.A. High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709. DOI
Yeh J.J., Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables. 1985;32:1–155. doi: 10.1016/0092-640X(85)90016-6. DOI
Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Neese F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI
Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/b515623h. PubMed DOI
Hellweg A., Hättig C., Höfener S., Klopper W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc. 2007;117:587–597. doi: 10.1007/s00214-007-0250-5. DOI
Malmqvist P.Å., Roos B.O. The CASSCF state interaction method. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI
Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252. doi: 10.1063/1.1361246. DOI
Ganyushin D., Neese F. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006;125:024103. doi: 10.1063/1.2213976. PubMed DOI
Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI
Maurice R., Bastardis R., de Graaf C., Suaud N., Mallah T., Guihéry N. Universal theoretical approach to extract anisotropic spin hamiltonians. J. Chem. Theory Comput. 2009;5:2977–2984. doi: 10.1021/ct900326e. PubMed DOI
Palatinus L., Chapuis G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
MacRae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC
Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics