Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene

. 2020 Oct 29 ; 25 (21) : . [epub] 20201029

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33138227

Grantová podpora
714850 H2020 European Research Council
LQ1601 Central European Institute of Technology
LTAUSA19060 INTER-EXCELLENCE
19-01536S Grantová Agentura České Republiky
CEITEC-VUT-J-20-6514 Brno University of Technology
PhD talent scholarship Brno City Municipality
IGA_PrF_2020_016 Palacký University Olomouc
VEGA 1/0639/18 Grant Agencies of the Slovak Republic
APVV-19-0087 Grant Agencies of the Slovak Republic

Studying the properties of complex molecules on surfaces is still mostly an unexplored research area because the deposition of the metal complexes has many pitfalls. Herein, we probed the possibility to produce surface hybrids by depositing a Co(II)-based complex with chalcone ligands on chemical vapor deposition (CVD)-grown graphene by a wet-chemistry approach and by thermal sublimation under high vacuum. Samples were characterized by high-frequency electron spin resonance (HF-ESR), XPS, Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy, supported with density functional theory (DFT) and complete active space self-consistent field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations. This compound's rationale is its structure, with several aromatic rings for weak binding and possible favorable π-π stacking onto graphene. In contrast to expectations, we observed the formation of nanodroplets on graphene for a drop-cast sample and microcrystallites localized at grain boundaries and defects after thermal sublimation.

Zobrazit více v PubMed

Caneschi A., Gatteschi D., Sessoli R., Barra A.L., Brunei L.C., Guillot M. Alternating Current Susceptibility, High Field Magnetization, and Millimeter Band EPR Evidence for a Ground S=10 State in [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O. J. Am. Chem. Soc. 1991;113:5873–5874. doi: 10.1021/ja00015a057. DOI

Sessoli R., Gatteschi D., Tsai H.L., Hendrickson D.N., Schake A.R., Wang S., Vincent J.B., Christou G., Folting K. High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4] J. Am. Chem. Soc. 1993;115:1804–1816. doi: 10.1021/ja00058a027. DOI

Sessoli R., Gatteschi D., Caneschi A., Novak M.A. Magnetic bistability in a metal-ion cluster. Nature. 1993;365:141–143. doi: 10.1038/365141a0. DOI

Gatteschi D., Sessoli R., Villain J. Molecular Nanomagnets. 1st ed. Oxford University Press; Oxford, UK: 2007.

Neese F., Pantazis D.A. What is not required to make a single molecule magnet. Faraday Discuss. 2011;148:229–238. doi: 10.1039/C005256F. PubMed DOI

Ishikawa N., Sugita M., Ishikawa T., Koshihara S.Y., Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 2003;125:8694–8695. doi: 10.1021/ja029629n. PubMed DOI

Guo F.-S., Day B.M., Chen Y.-C., Tong M.-L., Mansikkamäki A., Layfield R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science. 2018;362:1400–1403. doi: 10.1126/science.aav0652. PubMed DOI

Wolf S.A. Spintronics: A Spin-Based Electronics Vision for the Future. Science. 2001;294:1488–1495. doi: 10.1126/science.1065389. PubMed DOI

Leuenberger M.N., Loss D. Quantum computing in molecular magnets. Nature. 2001;410:789–793. doi: 10.1038/35071024. PubMed DOI

Bogani L., Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008;7:179–186. doi: 10.1038/nmat2133. PubMed DOI

Barra A.L., Gatteschi D., Sessoli R. High-frequency EPR spectra of a molecular nanomagnet: Understanding quantum tunneling of the magnetization. Phys. Rev. B Condens. Matter Mater. Phys. 1997;56:8192–8198. doi: 10.1103/PhysRevB.56.8192. DOI

Barra A.L., Gatteschi D., Sessoli R. High-frequency EPR spectra of [Fe8O2(OH)12(taCn)6]Br8: A critical appraisal of the barrier for the reorientation of the magnetization in single-molecule magnets. Chem. Eur. J. 2000;6:1608–1614. doi: 10.1002/(SICI)1521-3765(20000502)6:9<1608::AID-CHEM1608>3.0.CO;2-8. PubMed DOI

Barra A.L. High-frequency EPR spectroscopy of single-molecule magnets: A case study. Appl. Magn. Reson. 2001;21:619–628. doi: 10.1007/BF03162434. DOI

Krzystek J., Ozarowski A., Zvyagin S.A., Telser J. High spin Co(I): High-frequency and -field EPR spectroscopy of CoX(PPh 3) 3 (X = Cl, Br) Inorg. Chem. 2012;51:4954–4964. doi: 10.1021/ic202185x. PubMed DOI

Rechkemmer Y., Fischer J.E., Marx R., Dörfel M., Neugebauer P., Horvath S., Gysler M., Brock-Nannestad T., Frey W., Reid M.F., et al. Comprehensive Spectroscopic Determination of the Crystal Field Splitting in an Erbium Single-Ion Magnet. J. Am. Chem. Soc. 2015;137:13114–13120. doi: 10.1021/jacs.5b08344. PubMed DOI

Realista S., Fitzpatrick A.J., Santos G., Ferreira L.P., Barroso S., Pereira L.C.J., Bandeira N.A.G., Neugebauer P., Hrubý J., Morgan G.G., et al. A Mn(III) single ion magnet with tridentate Schiff-base ligands. Dalton Trans. 2016;45:12301–12307. doi: 10.1039/C6DT02538B. PubMed DOI

Kultaeva A., Biktagirov T., Neugebauer P., Bamberger H., Bergmann J., Van Slageren J., Krautscheid H., Pöppl A. Multifrequency EPR, SQUID, and DFT Study of Cupric Ions and Their Magnetic Coupling in the Metal-Organic Framework Compound ∞3[Cu(prz-trz-ia)] J. Phys. Chem. C. 2018;122:26642–26651. doi: 10.1021/acs.jpcc.8b08327. DOI

Neugebauer P., Bloos D., Marx R., Lutz P., Kern M., Aguilà D., Vaverka J., Laguta O., Dietrich C., Clérac R., et al. Ultra-broadband EPR spectroscopy in field and frequency domains. Phys. Chem. Chem. Phys. 2018;20:15528–15534. doi: 10.1039/C7CP07443C. PubMed DOI

Bucinsky L., Breza M., Malček M., Powers D.C., Hwang S.J., Krzystek J., Nocera D.G., Telser J. High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr IV Siloxide Complex and Computational Studies of Related Cr IV L 4 Systems. Inorg. Chem. 2019;58:4907–4920. doi: 10.1021/acs.inorgchem.8b03512. PubMed DOI

Hrubý J., Dvořák D., Squillantini L., Mannini M., van Slageren J., Herchel R., Nemec I., Neugebauer P. Co(ii)-Based single-ion magnets with 1,1’-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Trans. 2020;2:11697–11707. doi: 10.1039/D0DT01512A. PubMed DOI

Hrubý J., Santana V.T., Kostiuk D., Bouček M., Lenz S., Kern M., Šiffalovič P., van Slageren J., Neugebauer P. A graphene-based hybrid material with quantum bits prepared by the double Langmuir–Schaefer method. RSC Adv. 2019;9:24066–24073. doi: 10.1039/C9RA04537F. PubMed DOI PMC

Marie L.S., El Fatimy A., Hrubý J., Nemec I., Hunt J., Myers-Ward R., Gaskill D.K., Kruskopf M., Yang Y., Elmquist R., et al. Nanostructured graphene for nanoscale electron paramagnetic resonance spectroscopy. J. Phys. Mater. 2020;3:014013. doi: 10.1088/2515-7639/ab6af8. DOI

Ciccullo F., Glaser M., Sättele M.S., Lenz S., Neugebauer P., Rechkemmer Y., Van Slageren J., Casu M.B. Thin film properties and stability of a potential molecular quantum bit based on copper(ii) J. Mater. Chem. C. 2018;6:8028–8034. doi: 10.1039/C8TC02610F. DOI

Holmberg R.J., Murugesu M. Adhering magnetic molecules to surfaces. J. Mater. Chem. C. 2015;3:11986–11998. doi: 10.1039/C5TC03225C. DOI

Caneschi A., Gatteschi D., Totti F. Molecular magnets and surfaces: A promising marriage. A DFT insight. Coord. Chem. Rev. 2015;289–290:357–378. doi: 10.1016/j.ccr.2014.11.016. DOI

Mannini M., Pineider F., Sainctavit P., Danieli C., Otero E., Sciancalepore C., Talarico A.M., Arrio M.A., Cornia A., Gatteschi D., et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 2009;8:194–197. doi: 10.1038/nmat2374. PubMed DOI

Saywell A., Magnano G., Satterley C.J., Perdigão L.M.A., Britton A.J., Taleb N., Del Carmen Giménez-López M., Champness N.R., O’Shea J.N., Beton P.H. Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat. Commun. 2010;1:75. doi: 10.1038/ncomms1075. PubMed DOI

Rozbořil J., Rechkemmer Y., Bloos D., Münz F., Wang C.N., Neugebauer P., Čechal J., Novák J., van Slageren J. Magneto-optical investigations of molecular nanomagnet monolayers. Dalton Trans. 2016;45:7555–7558. doi: 10.1039/C6DT00839A. PubMed DOI

Malavolti L., Lanzilotto V., Ninova S., Poggini L., Cimatti I., Cortigiani B., Margheriti L., Chiappe D., Otero E., Sainctavit P., et al. Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets. Nano Lett. 2015;15:535–541. doi: 10.1021/nl503925h. PubMed DOI

Kiefl E., Mannini M., Bernot K., Yi X., Amato A., Leviant T., Magnani A., Prokscha T., Suter A., Sessoli R., et al. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet. ACS Nano. 2016;10:5663–5669. doi: 10.1021/acsnano.6b01817. PubMed DOI

Lanzilotto V., Malavolti L., Ninova S., Cimatti I., Poggini L., Cortigiani B., Mannini M., Totti F., Cornia A., Sessoli R. The Challenge of Thermal Deposition of Coordination Compounds: Insight into the Case of an Fe4 Single Molecule Magnet. Chem. Mater. 2016;28:7693–7702. doi: 10.1021/acs.chemmater.6b02696. DOI

Cañon-Mancisidor W., Miralles S.G., Baldoví J.J., Espallargas G.M., Gaita-Ariño A., Coronado E. Sublimable Single Ion Magnets Based on Lanthanoid Quinolinate Complexes: The Role of Intermolecular Interactions on Their Thermal Stability. Inorg. Chem. 2018;57:14170–14177. doi: 10.1021/acs.inorgchem.8b02080. PubMed DOI

Miralles S.G., Bedoya-Pinto A., Baldoví J.J., Cañon-Mancisidor W., Prado Y., Prima-Garcia H., Gaita-Ariño A., Mínguez Espallargas G., Hueso L.E., Coronado E. Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes. Chem. Sci. 2018;9:199–208. doi: 10.1039/C7SC03463F. PubMed DOI PMC

Margheriti L., Mannini M., Sorace L., Gorini L., Gatteschi D., Caneschi A., Chiappe D., Moroni R., de Mongeot F.B., Cornia A., et al. Thermal Deposition of Intact Tetrairon(III) Single-Molecule Magnets in High-Vacuum Conditions. Small. 2009;5:1460–1466. doi: 10.1002/smll.200801594. PubMed DOI

Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Du X., Skachko I., Andrei E.Y., Barker A. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008;3:491–495. doi: 10.1038/nnano.2008.199. PubMed DOI

Neugebauer P., Orlita M., Faugeras C., Barra A.L., Potemski M. How perfect can graphene be? Phys. Rev. Lett. 2009;103:136403. doi: 10.1103/PhysRevLett.103.136403. PubMed DOI

Lee C., Wei X., Kysar J.W., Hone J. Measurement of the Elastic of Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI

Seol J.H., Jo I., Moore A.L., Lindsay L., Aitken Z.H., Pettes M.T., Li X., Yao Z., Huang R., Broido D., et al. Two-dimensional phonon transport in supported graphene. Science. 2010;328:213–216. doi: 10.1126/science.1184014. PubMed DOI

Novoselov K.S.S., Geim A.K.K., Morozov S.V.V., Jiang D., Zhang Y., Dubonos S.V.V., Grigorieva I.V.V., Firsov A.A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Warner J.H., Mukai M., Kirkland A.I. Atomic structure of ABC rhombohedral stacked trilayer graphene. ACS Nano. 2012;6:5680–5686. doi: 10.1021/nn3017926. PubMed DOI

VanMil B.L., Myers-Ward R.L., Tedesco J.L., Eddy C.R., Jr., Jernigan G.G., Culbertson J.C., Campbell P.M., McCrate J.M., Kitt S.A., Gaskill D.K. Graphene Formation on SiC Substrates. Mater. Sci. Forum. 2009;615–617:211–214. doi: 10.4028/www.scientific.net/MSF.615-617.211. DOI

Coleman J.N., Lotya M., O’Neill A., Bergin S.D., King P.J., Khan U., Young K., Gaucher A., De S., Smith R.J., et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331:568–571. doi: 10.1126/science.1194975. PubMed DOI

Bae S., Kim H., Lee Y., Xu X., Park J.S., Zheng Y., Balakrishnan J., Lei T., Ri Kim H., Song Y., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010;5:574–578. doi: 10.1038/nnano.2010.132. PubMed DOI

Atanasov M., Aravena D., Suturina E., Bill E., Maganas D., Neese F. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 2015;289–290:177–214. doi: 10.1016/j.ccr.2014.10.015. DOI

SHAPE, Version 2.1. University of Barcelona; Barcelona, Spain: 2013.

Alvarez S. Polyhedra in (inorganic) chemistry. Dalton Trans. 2005;13:2209–2233. doi: 10.1039/b503582c. PubMed DOI

Mankad V., Gupta S.K., Jha P.K., Ovsyuk N.N., Kachurin G.A. Low-frequency Raman scattering from Si/Ge nanocrystals in different matrixes caused by acoustic phonon quantization. J. Appl. Phys. 2012;112:54318. doi: 10.1063/1.4747933. DOI

Spizzirri P.G., Fang J.H., Rubanov S., Gauja E., Prawer S. Nano-Raman spectroscopy of silicon surfaces. arXiv. 20101002.2692

Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI

Akula S., Parthiban V., Peera S.G., Singh B.P., Dhakate S.R., Sahu A.K. Simultaneous Co-Doping of Nitrogen and Fluorine into MWCNTs: An In-Situ Conversion to Graphene Like Sheets and Its Electro-Catalytic Activity toward Oxygen Reduction Reaction. J. Electrochem. Soc. 2017;164:F568–F576. doi: 10.1149/2.0501706jes. DOI

Fiedler R., Herzschuh R. An XPS investigation of the effects of heat treatment on the chlorine surface chemistry of some lignites. Fuel. 1993;72:1501–1505. doi: 10.1016/0016-2361(93)90007-O. DOI

Poneti G., Mannini M., Cortigiani B., Poggini L., Sorace L., Otero E., Sainctavit P., Sessoli R., Dei A. Magnetic and spectroscopic investigation of thermally and optically driven valence tautomerism in thioether-bridged dinuclear cobalt-dioxolene complexes. Inorg. Chem. 2013;52:11798–11805. doi: 10.1021/ic4011949. PubMed DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] Phys. Rev. Lett. 1997;78:1396. doi: 10.1103/PhysRevLett.78.1396. PubMed DOI

Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI

Hussain T., Siddiqui H.L., Zia-ur-Rehman M., Masoom Yasinzai M., Parvez M. Anti-oxidant, anti-fungal and anti-leishmanial activities of novel 3-[4-(1H-imidazol-1-yl) phenyl]prop-2-en-1-ones. Eur. J. Med. Chem. 2009;44:4654–4660. doi: 10.1016/j.ejmech.2009.06.038. PubMed DOI

Masaryk L., Moncol J., Herchel R., Nemec I. Halogen Bonding in New Dichloride-Cobalt(II) Complex with Iodo Substituted Chalcone Ligands. Crystals. 2020;10:354. doi: 10.3390/cryst10050354. DOI

Shirley D.A. High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709. DOI

Yeh J.J., Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables. 1985;32:1–155. doi: 10.1016/0092-640X(85)90016-6. DOI

Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Neese F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI

Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/b515623h. PubMed DOI

Hellweg A., Hättig C., Höfener S., Klopper W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc. 2007;117:587–597. doi: 10.1007/s00214-007-0250-5. DOI

Malmqvist P.Å., Roos B.O. The CASSCF state interaction method. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI

Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252. doi: 10.1063/1.1361246. DOI

Ganyushin D., Neese F. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006;125:024103. doi: 10.1063/1.2213976. PubMed DOI

Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI

Maurice R., Bastardis R., de Graaf C., Suaud N., Mallah T., Guihéry N. Universal theoretical approach to extract anisotropic spin hamiltonians. J. Chem. Theory Comput. 2009;5:2977–2984. doi: 10.1021/ct900326e. PubMed DOI

Palatinus L., Chapuis G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

MacRae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...