A graphene-based hybrid material with quantum bits prepared by the double Langmuir-Schaefer method
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35527863
PubMed Central
PMC9069494
DOI
10.1039/c9ra04537f
PII: c9ra04537f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The scalability and stability of molecular qubits deposited on surfaces is a crucial step for incorporating them into upcoming electronic devices. Herein, we report on the preparation and characterisation of a molecular quantum bit, copper(ii)dibenzoylmethane [Cu(dbm)2], deposited by a modified Langmuir-Schaefer (LS) technique onto a graphene-based substrate. A double LS deposition was used for the preparation of a few-layer-graphene (FLG) on a Si/SiO2 substrate with subsequent deposition of the molecules. Magnetic properties were probed by high-frequency electron spin resonance (HF-ESR) spectroscopy and found maintained after deposition. Additional spectroscopic and imaging techniques, such as Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were performed to characterise the deposited sample. Our approach demonstrated the possibility to utilise a controlled wet-chemistry protocol to prepare an array of potential quantum bits on a disordered graphene-based substrate. The deployed spectroscopic techniques showed unambiguously the robustness of our studied system with a potential to fabricate large-scale, intact, and stable quantum bits.
Central European Institute of Technology CEITEC BUT Purkyňova 656 123 61200 Brno Czech Republic
Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
Institute of Physics Slovak Academy of Sciences Dúbravská cesta 9 84511 Bratislava Slovakia
Zobrazit více v PubMed
Perdomo-Ortiz A. Dickson N. Drew-Brook M. Rose G. Aspuru-Guzik A. Sci. Rep. 2012;2:1–7. doi: 10.1038/srep00571. PubMed DOI PMC
Gershenfeld N. Chuang I. L. Sci. Am. 1998;278:66–71. doi: 10.1038/scientificamerican0698-66. DOI
Leuenberger M. N. Loss D. Nature. 2001;410:789–793. doi: 10.1038/35071024. PubMed DOI
Wolf S. A. Awschalom D. D. Buhrman R. A. Daughton J. M. Von Molnar S. Roukes M. L. Chtchelkanova A. Y. Treger D. M. Science. 2001;294:1488–1495. doi: 10.1126/science.1065389. PubMed DOI
Bogani L. Wernsdorfer W. Nat. Mater. 2008;7:179–186. doi: 10.1038/nmat2133. PubMed DOI
Doherty M. W. Manson N. B. Delaney P. Jelezko F. Wrachtrup J. Hollenberg L. C. Phys. Rep. 2013;528:1–45. doi: 10.1016/j.physrep.2013.02.001. DOI
Koehl W. F. Buckley B. B. Heremans F. J. Calusine G. Awschalom D. D. Nature. 2011;479:84–87. doi: 10.1038/nature10562. PubMed DOI
Widmann M. Lee S. Y. Rendler T. Son N. T. Fedder H. Paik S. Yang L. P. Zhao N. Yang S. Booker I. Denisenko A. Jamali M. Ali Momenzadeh S. Gerhardt I. Ohshima T. Gali A. Janzén E. Wrachtrup J. Nat. Mater. 2015;14:164–168. doi: 10.1038/nmat4145. PubMed DOI
Christle D. J. Falk A. L. Andrich P. Klimov P. V. Hassan J. U. Son N. T. Janzén E. Ohshima T. Awschalom D. D. Nat. Mater. 2015;14:160–163. doi: 10.1038/nmat4144. PubMed DOI
Jelezko F. Wrachtrup J. Phys. Status Solidi A. 2006;203:3207–3225. doi: 10.1002/pssa.200671403. DOI
Bader K. Dengler D. Lenz S. Endeward B. Jiang S.-d. Neugebauer P. Slageren J. V. Nat. Commun. 2014;5:1–5. PubMed
DiVincenzo D. P. Fortschr. Phys. 2000;48:771–783. doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. DOI
Lenz S. Bader K. Bamberger H. Van Slageren J. Chem. Commun. 2017;53:4477–4480. doi: 10.1039/C6CC07813C. PubMed DOI
Geim A. K. Novoselov K. S. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Du X. Skachko I. Barker A. Andrei E. Y. Nat. Nanotechnol. 2008;3:491–495. doi: 10.1038/nnano.2008.199. PubMed DOI
Lee C. Wei X. Kysar J. W. Hone J. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI
Seol J. H. Jo I. Moore A. L. Lindsay L. Aitken Z. H. Pettes M. T. Li X. Yao Z. Huang R. Broido D. Mingo N. Ruoff R. S. Shi L. Science. 2010;328:213–216. doi: 10.1126/science.1184014. PubMed DOI
Neugebauer P. Orlita M. Faugeras C. Barra A. L. Potemski M. Phys. Rev. Lett. 2009;103:136403. doi: 10.1103/PhysRevLett.103.136403. PubMed DOI
Novoselov K. S. Geim A. K. Morozov S. V. Jiang D. Zhang Y. Dubonos S. V. Grigorieva I. V. Firsov A. A. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Warner J. H. Mukai M. Kirkland A. I. ACS Nano. 2012;6:5680–5686. doi: 10.1021/nn3017926. PubMed DOI
VanMil B. L. Myers-Ward R. L. Tedesco J. Eddy Jr C. R. Jernigan G. G. Culbertson J. C. Campbell P. M. McCrate J. Kitt S. Gaskill D. K. Mater. Sci. Forum. 2009;615–617:211–214.
Coleman J. N. Lotya M. O'Neill A. Bergin S. D. King P. J. Khan U. Young K. Gaucher A. De S. Smith R. J. Shvets I. V. Arora S. K. Stanton G. Kim H. Y. Lee K. Kim G. T. Duesberg G. S. Hallam T. Boland J. J. Wang J. J. Donegan J. F. Grunlan J. C. Moriarty G. Shmeliov A. Nicholls R. J. Perkins J. M. Grieveson E. M. Theuwissen K. McComb D. W. Nellist P. D. Nicolosi V. Science. 2011;331:568–571. doi: 10.1126/science.1194975. PubMed DOI
Wajid A. S. Das S. Irin F. Ahmed H. S. Shelburne J. L. Parviz D. Fullerton R. J. Jankowski A. F. Hedden R. C. Green M. J. Carbon. 2012;50:526–534. doi: 10.1016/j.carbon.2011.09.008. DOI
Paton K. R. Varrla E. Backes C. Smith R. J. Khan U. O'Neill A. Boland C. Lotya M. Istrate O. M. King P. Higgins T. Barwich S. May P. Puczkarski P. Ahmed I. Moebius M. Pettersson H. Long E. Coelho J. O'Brien S. E. McGuire E. K. Sanchez B. M. Duesberg G. S. McEvoy N. Pennycook T. J. Downing C. Crossley A. Nicolosi V. Coleman J. N. Nat. Mater. 2014;13:624–630. doi: 10.1038/nmat3944. PubMed DOI
Vadukumpully S. Paul J. Valiyaveettil S. Carbon. 2009;47:3288–3294. doi: 10.1016/j.carbon.2009.07.049. DOI
Hong J. Bekyarova E. De Heer W. A. Haddon R. C. Khizroev S. ACS Nano. 2013;7:10011–10022. doi: 10.1021/nn403939r. PubMed DOI
Zhuang X. Tian C. Luan F. Wu X. Chen L. RSC Adv. 2016;6:92541–92546. doi: 10.1039/C6RA14970G. DOI
Ricciardulli A. G. Yang S. Wetzelaer G.-J. A. H. Feng X. Blom P. W. Adv. Funct. Mater. 2018;28:1706010. doi: 10.1002/adfm.201706010. DOI
Kim T.-H. Lee D. Choi J.-W. Biosens. Bioelectron. 2017;94:485–499. doi: 10.1016/j.bios.2017.03.032. PubMed DOI
Zor E. Morales-Narváez E. Alpaydin S. Bingol H. Ersoz M. Merkoçi A. Biosens. Bioelectron. 2017;87:410–416. doi: 10.1016/j.bios.2016.08.074. PubMed DOI
Wang X. Yu S. Liu W. Fu L. Wang Y. Li J. Chen L. ACS Sens. 2018;3:378–385. doi: 10.1021/acssensors.7b00804. PubMed DOI
Ciesielski A. Samorì P. Adv. Mater. 2016:6030–6051. doi: 10.1002/adma.201505371. PubMed DOI
Le Ferrand H. Bolisetty S. Demirörs A. F. Libanori R. Studart A. R. Mezzenga R. Nat. Commun. 2016;7:12078. doi: 10.1038/ncomms12078. PubMed DOI PMC
Qin S. Chen X. Du Q. Nie Z. Wang X. Lu H. Wang X. Liu K. Xu Y. Shi Y. Zhang R. Wang F. ACS Appl. Mater. Interfaces. 2018;10:38326–38333. doi: 10.1021/acsami.8b11596. PubMed DOI
Ciccullo F. Glaser M. Sättele M. S. Lenz S. Neugebauer P. Rechkemmer Y. Van Slageren J. Casu M. B. J. Mater. Chem. C. 2018;6:8028–8034. doi: 10.1039/C8TC02610F. DOI
Ma B. Q. Gao S. Wang Z. M. Liao C. S. Yan C. H. Xu G. X. J. Chem. Crystallogr. 1999;29:793–796. doi: 10.1023/A:1009543703278. DOI
Hernandez Y. Nicolosi V. Lotya M. Blighe F. M. Sun Z. De S. McGovern I. T. Holland B. Byrne M. Gun’ko Y. K. Boland J. J. Niraj P. Duesberg G. Krishnamurthy S. Goodhue R. Hutchison J. Scardaci V. Ferrari A. C. Coleman J. N. Nat. Nanotechnol. 2008;3:563–568. doi: 10.1038/nnano.2008.215. PubMed DOI
Shirley D. A. Phys. Rev. B: Solid State. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709. DOI
Neugebauer P. Bloos D. Marx R. Lutz P. Kern M. Aguilà D. Vaverka J. Laguta O. Dietrich C. Clérac R. Van Slageren J. Phys. Chem. Chem. Phys. 2018;20:15528–15534. doi: 10.1039/C7CP07443C. PubMed DOI
Stoll S. Schweiger A. J. Magn. Reson. 2006;178:42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI
Spizzirri P. G. Fang J. H. Rubanov S. Gauja E. Prawer S. Mater. Forum. 2008;34:161–166.
Mankad V. Gupta S. K. Jha P. K. Ovsyuk N. N. Kachurin G. A. J. Appl. Phys. 2012;112:054318. doi: 10.1063/1.4747933. DOI
Ferrari A. C. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Malard L. M. Pimenta M. A. Dresselhaus G. Dresselhaus M. S. Phys. Rep. 2009;473:51–87. doi: 10.1016/j.physrep.2009.02.003. DOI
Nekoei A. R. Vakili M. Hakimi-Tabar M. Tayyari S. F. Afzali R. Kjaergaard H. G. Spectrochim. Acta, Part A. 2014;128:272–279. doi: 10.1016/j.saa.2014.02.097. PubMed DOI
Tayyari S. F. Rahemi H. Nekoei A. R. Zahedi-Tabrizi M. Wang Y. A. Spectrochim. Acta, Part A. 2007;66:394–404. doi: 10.1016/j.saa.2006.03.010. PubMed DOI
Casu M. B. Tönshoff C. Bettinger H. F. Schundelmeier S. Abb S. Savu S.-A. Chassé T. RSC Adv. 2012;2:5112. doi: 10.1039/C2RA20168B. DOI
Savu S. A. Biswas I. Sorace L. Mannini M. Rovai D. Caneschi A. Chassé T. Casu M. B. Chem.–Eur. J. 2013;19:3445–3450. doi: 10.1002/chem.201203247. PubMed DOI
Ishii H. Sugiyama K. Ito E. Seki K. Adv. Mater. 1999;11:605–625. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q. DOI
Sjögren B. Svensson S. Naves De Brito A. Correia N. Keane M. P. Enkvist C. Lunell S. J. Chem. Phys. 1992;96:6389–6398. doi: 10.1063/1.462633. DOI
Ghijsen J. Tjeng L. H. v. Van Elp J. Eskes H. Westerink J. Sawatzky G. A. Czyzyk M. T. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;38:11322. doi: 10.1103/PhysRevB.38.11322. PubMed DOI
Chawla S. K. Sankarraman N. Payer J. H. J. Electron Spectrosc. Relat. Phenom. 1992;61:1–18. doi: 10.1016/0368-2048(92)80047-C. DOI
Yin M. Wu C.-K. Lou Y. Burda C. Koberstein J. T. Zhu Y. O'Brien S. J. Am. Chem. Soc. 2005;127:9506–9511. doi: 10.1021/ja050006u. PubMed DOI
Barreca D. Fois E. Gasparotto A. Seraglia R. Tondello E. Tabacchi G. Chem.–Eur. J. 2011;17:10864–10870. doi: 10.1002/chem.201101551. PubMed DOI
Glaser M. Ciccullo F. Giangrisostomi E. Ovsyannikov R. Calzolari A. Casu M. B. J. Mater. Chem. C. 2018;6:2769–2777. doi: 10.1039/C7TC04983H. DOI
David L. Crăciun C. Cozar O. Chiş V. Agut C. Rusu D. Rusu M. J. Mol. Struct. 2001;563–564:573–578. doi: 10.1016/S0022-2860(00)00941-8. DOI
Bak M. Nielsen N. C. J. Magn. Reson. 1997;125:132–139. doi: 10.1006/jmre.1996.1087. PubMed DOI
Von Zelewsky A. Fierz H. Inorg. Chem. 1971;10:1556–1557. doi: 10.1021/ic50101a060. DOI
Belford R. L. Davis P. H. Inorg. Chem. 1971;10:1557–1558. doi: 10.1021/ic50101a061. DOI
Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene