Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39649490
PubMed Central
PMC11586844
DOI
10.32615/ps.2023.041
PII: PS61465
Knihovny.cz E-zdroje
- Klíčová slova
- field effect, graphene, liquid-phase exfoliation, optoelectronics, photosynthetic reaction center,
- Publikační typ
- časopisecké články MeSH
Photosynthetic reaction center (pRC) purified from Rhodobacter sphaeroides 2.4.1 purple bacteria was deposited on a graphene carrier exfoliated from the liquid phase and layered on the surface of SiO2/Si substrate for optoelectronic application. Light-induced changes in the drain-source current vs. gate voltage are demonstrated. Dried photosynthetic reaction centers/graphene composite on SiO2/Si shows a photochemical/-physical activity, as a result of interaction with the current flow in the graphene carrier matrix. The current changes are sensitive to light, due to the contribution from the charge separation in the pRC, and to the applied gate and drain-source voltages.
HUN REN Biological Research Centre Szeged Institute of Biophysics Temesvári Krt 62 Szeged Hungary
HUN REN Biological Research Centre Szeged Institute of Plant Biology Temesvári Krt 62 Szeged Hungary
Institute of Physics Belgrade University of Belgrade Pregrevica 118 11080 Belgrade Serbia
Zobrazit více v PubMed
Adar F.: Interpretation of Raman spectrum of proteins. – Spectroscopy 37: 9-13, 2022. 10.56530/spectroscopy.lo2270l5 DOI
Allen J.P., Chamberlain K.D., Olson T.L., Williams J.C.: A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain. – Photoch. Photobio. Sci. 21: 91-99, 2022. 10.1007/s43630-021-00142-7 PubMed DOI
Altamura E., Albanese P., Marotta R., Mavelli F.: Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. – PNAS 118: e2012170118, 2021. 10.1073/pnas.2012170118 PubMed DOI PMC
Andronescu C., Schuhmann W.: Graphene-based field effect transistors as biosensors. – Curr. Opin. Electrochem. 3: 11-17, 2017. 10.1016/j.coelec.2017.03.002 DOI
Blake P., Brimicombe P.D., Nair R.R. et al. : Graphene-based liquid crystal device. – Nano Lett. 8: 1704-1708, 2008. 10.1021/nl080649i PubMed DOI
Clayton R.K.: Effects of dehydration on reaction centers from PubMed DOI
Cogdell R.J., Gardiner A.T., Molina P.I., Cronin L.: The use and misuse of photosynthesis in the quest for novel methods to harness solar energy to make fuel. – Philos. T. Roy. Soc. B 371: 20110603, 2013. 10.1098/rsta.2011.0603 PubMed DOI
Coleman J.N.: Liquid exfoliation of defect-free graphene. – Acc. Chem. Res. 46: 14-22, 2013. 10.1021/ar300009f PubMed DOI
Csiki R., Drieschner S., Lyuleeva A. et al. : Photocurrent generation of biohybrid systems based on bacterial reaction centers and graphene electrodes. – Diam. Relat. Mater. 89: 286-292, 2018. 10.1016/j.diamond.2018.09.005 DOI
Daliento D., Chouder A., Guerriero P. et al. : Monitoring, diagnosis, and power forecasting for photovoltaic fields: a review. – Int. J. Photoenergy 2017: 1356851, 2017. 10.1155/2017/1356851 DOI
Darder M., Aranda P., Ruiz-Hitzky E.: Bionanocomposites: a new concept of ecological, bioinspired and functional hybrid materials. – Adv. Mater. 19: 1309-1319, 2007. 10.1002/adma.200602328 DOI
Di Lauro M., la Gatta S., Bortolotti C.A. et al. : A bacterial photosynthetic enzymatic unit modulating organic transistors with light. – Adv. Electron. Mater. 6: 1900888, 2020. 10.1002/aelm.201900888 DOI
Dorogi M., Bálint Z., Mikó C. et al. : Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. – J. Phys. Chem. B 110: 21473-21479, 2006. 10.1021/jp060828t PubMed DOI
Geim A.K.: Graphene: status and prospects. – Science 324: 1530-1534, 2009. 10.1126/science.1158877 PubMed DOI
Geim A.K., Novoselov K.S.: The rise of graphene. – Nat. Mater. 6: 183-191, 2007. 10.1038/nmat1849 PubMed DOI
Giraldo J.P., Landry M.P., Faltermeier S.M. et al. : Plant nanobionics approach to augment photosynthesis and biochemical sensing. – Nat. Mater. 13: 400-408, 2014. 10.1038/nmat3890 PubMed DOI
Hajdu K., Balderas-Valadez R.F., Carlino A. et al. : Porous silicon pillar structures/photosynthetic reaction centre protein hybrid for bioelectronic applications. – Photoch. Photobio. Sci. 21: 13-22, 2021. 10.1007/s43630-021-00121-y PubMed DOI
Hajdu K., Szabó T., Magyar M. et al. : Photosynthetic reaction center protein in nanostructures. – Phys. Status Solidi B 248: 2700-2703, 2011. 10.1002/pssb.201100046 DOI
Hajdu K., Szabó T., Sarrai A.E. et al. : Functional nanohybrid materials from photosynthetic reaction center proteins. – Int. J. Photoenergy 2017: 9128291, 2017. 10.1155/2017/9128291 DOI
Hartmann V., Kothe T., Pöler S. et al. : Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells. – Phys. Chem. Chem. Phys. 16: 11936-11941, 2014. 10.1039/C4CP00380B PubMed DOI
Heifler O., Carmeli C., Carmeli I.: Chemical tagging of membrane proteins enables oriented binding on solid surfaces. – Langmuir 36: 4556-4562, 2020. 10.1021/acs.langmuir.9b02969 PubMed DOI
Hrubý J., Vavrečková Š., Masaryk L. et al. : Deposition of tetracoordinate Co(II) complex with chalcone ligands on graphene. – Molecules 25: 5021, 2020. 10.3390/molecules25215021 PubMed DOI PMC
Jones M.R.: The petite purple photosynthetic powerpack. – Biochem. Soc. T. 37: 400-407, 2009. 10.1042/BST0370400 PubMed DOI
Kim H., Mattevi C., Kim H.J. et al. : Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly. – Nanoscale 5: 12365-12374, 2013. 10.1039/C3NR02907G PubMed DOI
Kim K.S., Zhao Y., Jang H. et al. : Large-scale pattern growth of graphene films for stretchable transparent electrodes. – Nature 457: 706-710, 2009. 10.1038/nature07719 PubMed DOI
Li X., Zhu Y., Cai W. et al. : Transfer of large-area graphene films for high-performance transparent conductive electrodes. – Nano Lett. 9: 4359-4363, 2009. 10.1021/nl902623y PubMed DOI
Luka G., Ahmadi A., Najjaran H. et al. : Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. – Sensors-Basel 15: 30011-30031, 2015. 10.3390/s151229783 PubMed DOI PMC
Magyar M., Hajdu K. Szabó T. et al. : Long term stabilization of reaction center protein photochemistry by carbon nanotubes. – Phys. Status Solidi B 248: 2454-2457, 2011. 10.1002/pssb.201100051 DOI
Magyar M., Hajdu K., Szabó T. et al. : Sensing hydrogen peroxide by carbon nanotube/horse radish peroxidase bio-nanocomposite. – Phys. Status Solidi B 250: 2559-2563, 2013. 10.1002/pssb.201300079 DOI
Magyar M., Rinyu L., Janovics R. et al. : Real-time sensing of hydrogen peroxide by ITO/MWCNT/horseradish peroxidase enzyme electrode. – J. Nanomater. 2016: 2437873, 2016. 10.1155/2016/2437873 DOI
Matković A., Milošević I., Milićević M. et al. : Enhanced sheet conductivity of Langmuir–Blodgett assembled graphene thin films by chemical doping. – 2D Materials 3: 015002, 2016. 10.1088/2053-1583/3/1/015002 DOI
Nagy L., Hajdu K., Fisher B. et al. : Photosynthetic reaction centres – from basic research to application possibilities. – Not. Sci. Biol. 2: 7-13, 2010. 10.15835/nsb224660 DOI
Nagy L., Kiss V., Brumfeld V. et al. : Thermal effects and structural changes of photosynthetic reaction centers characterized by wide frequency band hydrophone: Effects of carotenoids and terbutryn. – Photochem. Photobiol. 91: 1368-1375, 2015. 10.1111/php.12511 PubMed DOI
Nagy L., Magyar M.: No alternatives to photosynthesis: from molecules to nanostructures. – In: Jeschke P., Starikov E.B. (ed.): Agricultural Biocatalysis: Theoretical Studies and Photosynthesis Aspects. Pp. 210-247. Jenny Stanford Publishing, New York: 2022. 10.1201/9781003313076 DOI
Nagy L., Magyar M., Szabó T. et al. : Photosynthetic machineries in nano-systems. – Curr. Protein Pept. Sci. 15: 363-373, 2014. 10.2174/1389203715666140327102757 PubMed DOI PMC
Okamura M.Y., Isaacson R.A., Feher G.: Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of PubMed DOI PMC
Palazzo G., Francia F., Mallardi A. et al. : Water activity regulates the Q PubMed DOI
Rafferty C.N., Clayton R.K.: Linear dichroism and the orientation of reaction centers of Rhodopseudomonas sphaeroides in dried gelatin films. – BBA-Bioenergetics 545: 106-121, 1979. 10.1016/0005-2728(79)90118-X PubMed DOI
Robert B.: Resonance Raman studies of bacterial reaction centers. – BBA-Bioenergetics 1017: 99-111, 1990. 10.1016/0005-2728(90)90140-Y DOI
Ryu D.H., Kim Y.J., Kim S.I. et al. : Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. – Nanomaterials 8: 189, 2018. 10.3390/nano8040189 PubMed DOI PMC
Shoseyov O., Levy I.: NanoBioTechnology: BioInspired Devices and Materials of the Future. Pp. 485. Humana Press, Totowa: 2008. 10.1007/978-1-59745-218-2 DOI
Szabó T., Bencsik G., Magyar M. et al. : Photosynthetic reaction centers/ITO hybrid nanostructure. – Mater. Sci. Eng. C 33: 769-773, 2013. 10.1016/j.msec.2012.10.031 PubMed DOI
Szabó T., Csekő R., Hajdu K. et al. : Sensing photosynthetic herbicides in an electrochemical flow cell. – Photosynth. Res. 132: 127-134, 2017. 10.1007/s11120-016-0314-2 PubMed DOI
Szabó T., Magyar M., Hajdu K. et al. : Structural and functional hierarchy in photosynthetic energy conversion – from molecules to nanostructures. – Nanoscale Res. Lett. 10: 458, 2015. 10.1186/s11671-015-1173-z PubMed DOI PMC
Szabó T., Panajotović R., Vujin J. et al. : Photosynthetic reaction-center/graphene biohybrid for optoelectronics. – J. Nanosci. Nanotechnol. 21: 2342-2350, 2021. 10.1166/jnn.2021.18976 PubMed DOI
Szőke Á.F., Szabó G.S., Hórvölgyi Z. et al. : Accumulation of 2-acetylamino-5-mercapto-1,3,4-thiadiazole in chitosan coatings for improved anticorrosive effect on zinc. – Int. J. Biol. Macromol. 142: 423-431, 2020. 10.1016/j.ijbiomac.2019.09.114 PubMed DOI
Takshi A., Yaghoubi H., Wang J. et al. : Electrochemical field-effect transistor utilization to study the coupling success rate of photosynthetic protein complexes to cytochrome PubMed DOI PMC
Tamiaki H., Nishihara K., Shibata R.: Synthesis of self-aggregative zinc chlorophylls possessing polymerizable esters as a stable model compound for main light-harvesting antennas of green photosynthetic bacteria. – Int. J. Photoenergy 2006: 090989, 2006. 10.1155/IJP/2006/90989 DOI
Tandori J., Nagy L., Maróti P.: Semiquinone oscillation as a probe of quinone/herbicide binding in bacterial reaction centers. – Photosynthetica 25: 159-166, 1991. https://kramerius.lib.cas.cz/view/uuid:3aadab80-4ce4-11e1-8339-001143e3f55c?page=uuid:3aadab91-4ce4-11e1-8339-001143e3f55c
Tandori J., Nagy L., Puskás A. et al. : The Ile PubMed DOI
Tangorra R.R., Antonucci A., Milano F. et al. : Photoactive film by covalent immobilization of a bacterial photosynthetic protein on reduced graphene oxide surface. – MRS Online Proceedings Library 1717: 12-18, 2014.
Tomašević-Ilić T., Pešić J., Milošević I. et al. : Transparent and conductive films from liquid phase exfoliated graphene. – Opt. Quant. Electron. 48: 319, 2016. 10.1007/s11082-016-0591-1 DOI
Vermeglio A., Clayton R.K.: Orientation of chromophores in reaction centers of PubMed DOI
Wang X., Zhi L., Müllen K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. – Nano Lett. 8: 323-327, 2008. 10.1021/nl072838r PubMed DOI
Warncke K., Dutton P.L.: Experimental resolution of the free energies of aqueous solvation contributions to ligand-protein binding: quinone-Q PubMed DOI PMC
Wraight C.A., Clayton R.K.: The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of PubMed DOI
Xua J., Bhattacharya P., Váró G.: Monolithically integrated bacteriorhodopsin/semiconductor opto-electronic integrated circuit for a bio-photoreceiver. – Biosens. Bioelectron. 19: 885-892, 2004. 10.1016/j.bios.2003.08.018 PubMed DOI
Zhang H., Carey A.-M., Jeon K.-W. et al. : A highly stable and scalable photosynthetic reaction center–graphene hybrid electrode system for biomimetic solar energy transduction. – J. Mater. Chem. A 5: 6038-6041, 2017. 10.1039/C6TA10458D DOI