Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics

. 2023 ; 61 (4) : 465-472. [epub] 20231110

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649490

Photosynthetic reaction center (pRC) purified from Rhodobacter sphaeroides 2.4.1 purple bacteria was deposited on a graphene carrier exfoliated from the liquid phase and layered on the surface of SiO2/Si substrate for optoelectronic application. Light-induced changes in the drain-source current vs. gate voltage are demonstrated. Dried photosynthetic reaction centers/graphene composite on SiO2/Si shows a photochemical/-physical activity, as a result of interaction with the current flow in the graphene carrier matrix. The current changes are sensitive to light, due to the contribution from the charge separation in the pRC, and to the applied gate and drain-source voltages.

Zobrazit více v PubMed

Adar F.: Interpretation of Raman spectrum of proteins. – Spectroscopy 37: 9-13, 2022. 10.56530/spectroscopy.lo2270l5 DOI

Allen J.P., Chamberlain K.D., Olson T.L., Williams J.C.: A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain. – Photoch. Photobio. Sci. 21: 91-99, 2022. 10.1007/s43630-021-00142-7 PubMed DOI

Altamura E., Albanese P., Marotta R., Mavelli F.: Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. – PNAS 118: e2012170118, 2021. 10.1073/pnas.2012170118 PubMed DOI PMC

Andronescu C., Schuhmann W.: Graphene-based field effect transistors as biosensors. – Curr. Opin. Electrochem. 3: 11-17, 2017. 10.1016/j.coelec.2017.03.002 DOI

Blake P., Brimicombe P.D., Nair R.R. et al. : Graphene-based liquid crystal device. – Nano Lett. 8: 1704-1708, 2008. 10.1021/nl080649i PubMed DOI

Clayton R.K.: Effects of dehydration on reaction centers from PubMed DOI

Cogdell R.J., Gardiner A.T., Molina P.I., Cronin L.: The use and misuse of photosynthesis in the quest for novel methods to harness solar energy to make fuel. – Philos. T. Roy. Soc. B 371: 20110603, 2013. 10.1098/rsta.2011.0603 PubMed DOI

Coleman J.N.: Liquid exfoliation of defect-free graphene. – Acc. Chem. Res. 46: 14-22, 2013. 10.1021/ar300009f PubMed DOI

Csiki R., Drieschner S., Lyuleeva A. et al. : Photocurrent generation of biohybrid systems based on bacterial reaction centers and graphene electrodes. – Diam. Relat. Mater. 89: 286-292, 2018. 10.1016/j.diamond.2018.09.005 DOI

Daliento D., Chouder A., Guerriero P. et al. : Monitoring, diagnosis, and power forecasting for photovoltaic fields: a review. – Int. J. Photoenergy 2017: 1356851, 2017. 10.1155/2017/1356851 DOI

Darder M., Aranda P., Ruiz-Hitzky E.: Bionanocomposites: a new concept of ecological, bioinspired and functional hybrid materials. – Adv. Mater. 19: 1309-1319, 2007. 10.1002/adma.200602328 DOI

Di Lauro M., la Gatta S., Bortolotti C.A. et al. : A bacterial photosynthetic enzymatic unit modulating organic transistors with light. – Adv. Electron. Mater. 6: 1900888, 2020. 10.1002/aelm.201900888 DOI

Dorogi M., Bálint Z., Mikó C. et al. : Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. – J. Phys. Chem. B 110: 21473-21479, 2006. 10.1021/jp060828t PubMed DOI

Geim A.K.: Graphene: status and prospects. – Science 324: 1530-1534, 2009. 10.1126/science.1158877 PubMed DOI

Geim A.K., Novoselov K.S.: The rise of graphene. – Nat. Mater. 6: 183-191, 2007. 10.1038/nmat1849 PubMed DOI

Giraldo J.P., Landry M.P., Faltermeier S.M. et al. : Plant nanobionics approach to augment photosynthesis and biochemical sensing. – Nat. Mater. 13: 400-408, 2014. 10.1038/nmat3890 PubMed DOI

Hajdu K., Balderas-Valadez R.F., Carlino A. et al. : Porous silicon pillar structures/photosynthetic reaction centre protein hybrid for bioelectronic applications. – Photoch. Photobio. Sci. 21: 13-22, 2021. 10.1007/s43630-021-00121-y PubMed DOI

Hajdu K., Szabó T., Magyar M. et al. : Photosynthetic reaction center protein in nanostructures. – Phys. Status Solidi B 248: 2700-2703, 2011. 10.1002/pssb.201100046 DOI

Hajdu K., Szabó T., Sarrai A.E. et al. : Functional nanohybrid materials from photosynthetic reaction center proteins. – Int. J. Photoenergy 2017: 9128291, 2017. 10.1155/2017/9128291 DOI

Hartmann V., Kothe T., Pöler S. et al. : Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells. – Phys. Chem. Chem. Phys. 16: 11936-11941, 2014. 10.1039/C4CP00380B PubMed DOI

Heifler O., Carmeli C., Carmeli I.: Chemical tagging of membrane proteins enables oriented binding on solid surfaces. – Langmuir 36: 4556-4562, 2020. 10.1021/acs.langmuir.9b02969 PubMed DOI

Hrubý J., Vavrečková Š., Masaryk L. et al. : Deposition of tetracoordinate Co(II) complex with chalcone ligands on graphene. – Molecules 25: 5021, 2020. 10.3390/molecules25215021 PubMed DOI PMC

Jones M.R.: The petite purple photosynthetic powerpack. – Biochem. Soc. T. 37: 400-407, 2009. 10.1042/BST0370400 PubMed DOI

Kim H., Mattevi C., Kim H.J. et al. : Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly. – Nanoscale 5: 12365-12374, 2013. 10.1039/C3NR02907G PubMed DOI

Kim K.S., Zhao Y., Jang H. et al. : Large-scale pattern growth of graphene films for stretchable transparent electrodes. – Nature 457: 706-710, 2009. 10.1038/nature07719 PubMed DOI

Li X., Zhu Y., Cai W. et al. : Transfer of large-area graphene films for high-performance transparent conductive electrodes. – Nano Lett. 9: 4359-4363, 2009. 10.1021/nl902623y PubMed DOI

Luka G., Ahmadi A., Najjaran H. et al. : Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. – Sensors-Basel 15: 30011-30031, 2015. 10.3390/s151229783 PubMed DOI PMC

Magyar M., Hajdu K. Szabó T. et al. : Long term stabilization of reaction center protein photochemistry by carbon nanotubes. – Phys. Status Solidi B 248: 2454-2457, 2011. 10.1002/pssb.201100051 DOI

Magyar M., Hajdu K., Szabó T. et al. : Sensing hydrogen peroxide by carbon nanotube/horse radish peroxidase bio-nanocomposite. – Phys. Status Solidi B 250: 2559-2563, 2013. 10.1002/pssb.201300079 DOI

Magyar M., Rinyu L., Janovics R. et al. : Real-time sensing of hydrogen peroxide by ITO/MWCNT/horseradish peroxidase enzyme electrode. – J. Nanomater. 2016: 2437873, 2016. 10.1155/2016/2437873 DOI

Matković A., Milošević I., Milićević M. et al. : Enhanced sheet conductivity of Langmuir–Blodgett assembled graphene thin films by chemical doping. – 2D Materials 3: 015002, 2016. 10.1088/2053-1583/3/1/015002 DOI

Nagy L., Hajdu K., Fisher B. et al. : Photosynthetic reaction centres – from basic research to application possibilities. – Not. Sci. Biol. 2: 7-13, 2010. 10.15835/nsb224660 DOI

Nagy L., Kiss V., Brumfeld V. et al. : Thermal effects and structural changes of photosynthetic reaction centers characterized by wide frequency band hydrophone: Effects of carotenoids and terbutryn. – Photochem. Photobiol. 91: 1368-1375, 2015. 10.1111/php.12511 PubMed DOI

Nagy L., Magyar M.: No alternatives to photosynthesis: from molecules to nanostructures. – In: Jeschke P., Starikov E.B. (ed.): Agricultural Biocatalysis: Theoretical Studies and Photosynthesis Aspects. Pp. 210-247. Jenny Stanford Publishing, New York: 2022. 10.1201/9781003313076 DOI

Nagy L., Magyar M., Szabó T. et al. : Photosynthetic machineries in nano-systems. – Curr. Protein Pept. Sci. 15: 363-373, 2014. 10.2174/1389203715666140327102757 PubMed DOI PMC

Okamura M.Y., Isaacson R.A., Feher G.: Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of PubMed DOI PMC

Palazzo G., Francia F., Mallardi A. et al. : Water activity regulates the Q PubMed DOI

Rafferty C.N., Clayton R.K.: Linear dichroism and the orientation of reaction centers of Rhodopseudomonas sphaeroides in dried gelatin films. – BBA-Bioenergetics 545: 106-121, 1979. 10.1016/0005-2728(79)90118-X PubMed DOI

Robert B.: Resonance Raman studies of bacterial reaction centers. – BBA-Bioenergetics 1017: 99-111, 1990. 10.1016/0005-2728(90)90140-Y DOI

Ryu D.H., Kim Y.J., Kim S.I. et al. : Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. – Nanomaterials 8: 189, 2018. 10.3390/nano8040189 PubMed DOI PMC

Shoseyov O., Levy I.: NanoBioTechnology: BioInspired Devices and Materials of the Future. Pp. 485. Humana Press, Totowa: 2008. 10.1007/978-1-59745-218-2 DOI

Szabó T., Bencsik G., Magyar M. et al. : Photosynthetic reaction centers/ITO hybrid nanostructure. – Mater. Sci. Eng. C 33: 769-773, 2013. 10.1016/j.msec.2012.10.031 PubMed DOI

Szabó T., Csekő R., Hajdu K. et al. : Sensing photosynthetic herbicides in an electrochemical flow cell. – Photosynth. Res. 132: 127-134, 2017. 10.1007/s11120-016-0314-2 PubMed DOI

Szabó T., Magyar M., Hajdu K. et al. : Structural and functional hierarchy in photosynthetic energy conversion – from molecules to nanostructures. – Nanoscale Res. Lett. 10: 458, 2015. 10.1186/s11671-015-1173-z PubMed DOI PMC

Szabó T., Panajotović R., Vujin J. et al. : Photosynthetic reaction-center/graphene biohybrid for optoelectronics. – J. Nanosci. Nanotechnol. 21: 2342-2350, 2021. 10.1166/jnn.2021.18976 PubMed DOI

Szőke Á.F., Szabó G.S., Hórvölgyi Z. et al. : Accumulation of 2-acetylamino-5-mercapto-1,3,4-thiadiazole in chitosan coatings for improved anticorrosive effect on zinc. – Int. J. Biol. Macromol. 142: 423-431, 2020. 10.1016/j.ijbiomac.2019.09.114 PubMed DOI

Takshi A., Yaghoubi H., Wang J. et al. : Electrochemical field-effect transistor utilization to study the coupling success rate of photosynthetic protein complexes to cytochrome PubMed DOI PMC

Tamiaki H., Nishihara K., Shibata R.: Synthesis of self-aggregative zinc chlorophylls possessing polymerizable esters as a stable model compound for main light-harvesting antennas of green photosynthetic bacteria. – Int. J. Photoenergy 2006: 090989, 2006. 10.1155/IJP/2006/90989 DOI

Tandori J., Nagy L., Maróti P.: Semiquinone oscillation as a probe of quinone/herbicide binding in bacterial reaction centers. – Photosynthetica 25: 159-166, 1991. https://kramerius.lib.cas.cz/view/uuid:3aadab80-4ce4-11e1-8339-001143e3f55c?page=uuid:3aadab91-4ce4-11e1-8339-001143e3f55c

Tandori J., Nagy L., Puskás A. et al. : The Ile PubMed DOI

Tangorra R.R., Antonucci A., Milano F. et al. : Photoactive film by covalent immobilization of a bacterial photosynthetic protein on reduced graphene oxide surface. – MRS Online Proceedings Library 1717: 12-18, 2014.

Tomašević-Ilić T., Pešić J., Milošević I. et al. : Transparent and conductive films from liquid phase exfoliated graphene. – Opt. Quant. Electron. 48: 319, 2016. 10.1007/s11082-016-0591-1 DOI

Vermeglio A., Clayton R.K.: Orientation of chromophores in reaction centers of PubMed DOI

Wang X., Zhi L., Müllen K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. – Nano Lett. 8: 323-327, 2008. 10.1021/nl072838r PubMed DOI

Warncke K., Dutton P.L.: Experimental resolution of the free energies of aqueous solvation contributions to ligand-protein binding: quinone-Q PubMed DOI PMC

Wraight C.A., Clayton R.K.: The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of PubMed DOI

Xua J., Bhattacharya P., Váró G.: Monolithically integrated bacteriorhodopsin/semiconductor opto-electronic integrated circuit for a bio-photoreceiver. – Biosens. Bioelectron. 19: 885-892, 2004. 10.1016/j.bios.2003.08.018 PubMed DOI

Zhang H., Carey A.-M., Jeon K.-W. et al. : A highly stable and scalable photosynthetic reaction center–graphene hybrid electrode system for biomimetic solar energy transduction. – J. Mater. Chem. A 5: 6038-6041, 2017. 10.1039/C6TA10458D DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...