Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28350331
PubMed Central
PMC6154292
DOI
10.3390/molecules22040535
PII: molecules22040535
Knihovny.cz E-zdroje
- Klíčová slova
- antimycobacterial activity, in vitro activity, oxalamide, sulfamethoxazole, sulfonamides, tuberculosis, ureas,
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- močovina chemická syntéza chemie farmakologie MeSH
- molekulární struktura MeSH
- Mycobacterium účinky léků MeSH
- sulfamethoxazol chemická syntéza chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- močovina MeSH
- sulfamethoxazol MeSH
Infections caused by Mycobacterium tuberculosis (Mtb.) and nontuberculous mycobacteria (NTM) are considered to be a global health problem; current therapeutic options are limited. Sulfonamides have exhibited a wide range of biological activities including those against mycobacteria. Based on the activity of 4-(3-heptylureido)-N-(5-methylisoxazol-3-yl)benzenesulfonamide against NTM, we designed a series of homologous sulfamethoxazole-based n-alkyl ureas (C₁-C12), as well as several related ureas and an oxalamide. Fifteen ureas and one oxalamide were synthesized by five synthetic procedures and characterized. They were screened for their activity against Mtb. and three NTM strains (M. avium, M. kansasii). All of them share antimycobacterial properties with minimum inhibitory concentration (MIC) values starting from 2 µM. The highest activity showed 4,4'-[carbonylbis(azanediyl)]bis[N-(5-methylisoxazol-3-yl)benzenesulfonamide] with MIC of 2-62.5 µM (i.e., 1.07-33.28 µg/mL). Among n-alkyl ureas, methyl group is optimal for the inhibition of both Mtb. and NTM. Generally, longer alkyls led to increased MIC values, heptyl being an exception for NTM. Some of the novel derivatives are superior to parent sulfamethoxazole. Several urea and oxalamide derivatives are promising antimycobacterial agents with low micromolar MIC values.
Zobrazit více v PubMed
Krátký M., Mandíková J., Trejtnar F., Buchta V., Stolaříková J., Vinšová J. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidin-2,4,5-triones. Chem. Pap. 2015;69:1108–1117. doi: 10.1515/chempap-2015-0109. DOI
Brown-Elliott B.A., Nash K.A., Wallace R.J. Antimicrobial Susceptibility Testing, Drug Resistance Mechanisms, and Therapy of Infections with Nontuberculous Mycobacteria. Clin. Microbiol. Rev. 2012;25:545–582. doi: 10.1128/CMR.05030-11. PubMed DOI PMC
Ameen S.M., Drancourt M. In Vitro Susceptibility of Mycobacterium tuberculosis to Trimethoprim and Sulfonamides in France. Antimicrob. Agents Chemother. 2013;57:6370–6371. doi: 10.1128/AAC.01683-13. PubMed DOI PMC
Ameen S.M., Drancourt M. In vitro susceptibility of Mycobacterium avium complex mycobacteria to trimethoprim and sulfonamides. Int. J. Antimicrob. Agents. 2013;42:281–288. doi: 10.1016/j.ijantimicag.2013.05.006. PubMed DOI
Krátký M., Vinšová J., Volková M., Buchta V., Trejtnar F., Stolaříková J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem. 2012;50:433–440. doi: 10.1016/j.ejmech.2012.01.060. PubMed DOI
Chio L.C., Bolyard L.A., Nasr M., Queener S.F. Identification of a Class of Sulfonamides Highly Active against Dihydropteroate Synthase from Toxoplasma gondii, Pneumocystis carinii, and Mycobacterium avium. Antimicrob. Agents Chemother. 1996;40:727–733. PubMed PMC
Ceruso M., Vullo D., Scozzafava A., Supuran C.T. Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three β-class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2014;29:686–689. doi: 10.3109/14756366.2013.842233. PubMed DOI
Maresca A., Scozzafava A., Vullo D., Supuran C.T. Dihalogenated sulfanilamides and benzolamides are effective inhibitors of the three β-class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2013;28:384–387. doi: 10.3109/14756366.2011.645539. PubMed DOI
Patil V., Kale M., Raichurkar A., Bhaskar B., Prahlad D., Balganesh M., Nandan S., Hameed P.S. Design and synthesis of triazolopyrimidine acylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase. Bioorg. Med. Chem. Lett. 2014;24:2222–2225. doi: 10.1016/j.bmcl.2014.02.054. PubMed DOI
Abrahams K.A., Chung C.W., Ghidelli-Disse S., Rullas J., Rebollo-López M.J., Gurcha S.S., Cox J.A.G., Mendoza A., Jiménez-Navarro E., Martínez-Martínez M.S., et al. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat. Commun. 2016;7:12581. doi: 10.1038/ncomms12581. PubMed DOI PMC
Mishra C.B., Kumari S., Angeli A., Monti S.M., Buonanno M., Prakash A., Tiwari M., Supuran C.T. Design, synthesis and biological evaluation of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamides as human carbonic anhydrase isoenzymes I, II, VII and XII inhibitors. J. Enzyme Inhib. Med. Chem. 2016;31:174–179. doi: 10.1080/14756366.2016.1197221. PubMed DOI
Luzina E.L., Popov A.V. Synthesis, evaluation of anticancer activity and COMPARE analysis of N-bis(trifluoromethyl)alkyl-N′-substituted ureas with pharmacophoric moieties. Eur. J. Med. Chem. 2012;53:364–373. doi: 10.1016/j.ejmech.2012.03.026. PubMed DOI
Luzina E.L., Popov A.V. Synthesis of 3,3,3-trifluoroethyl isocyanate, carbamate and ureas. Anticancer activity evaluation of N-(3,3,3-trifluoroethyl)-N′-substituted ureas. J. Fluorine Chem. 2015;176:82–88. doi: 10.1016/j.jfluchem.2015.06.005. PubMed DOI PMC
Sunduru N., Salin O., Gylfe A., Elofsson M. Design, synthesis and evaluation of novel polypharmacological antichlamydial agents. Eur. J. Med. Chem. 2015;101:595–603. doi: 10.1016/j.ejmech.2015.07.019. PubMed DOI
Aly M.R.E., Gobouri A.A., Hafez S.H.A., Saad H.A. Synthesis, Reactions, and Biological Activity of Some Triazine Derivatives Containing Sulfa Drug Moieties. Russ. J. Bioorg. Chem. 2015;41:437–450. doi: 10.1134/S1068162015040032. PubMed DOI
Brown J.R., North E.J., Hurdle J.G., Morisseau C., Scarborough J.S., Sun D., Kordulakova J., Scherman M.S., Jones V., Grzegorzewicz A., et al. The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg. Med. Chem. 2011;19:5585–5595. doi: 10.1016/j.bmc.2011.07.034. PubMed DOI PMC
Medapi B., Renuka J., Saxena S., Sridevi J.P., Medishetti R., Kulkarni P., Yogeeswari P., Sriram D. Design and synthesis of novel quinoline–aminopiperidine hybrid analogues as Mycobacterium tuberculosis DNA gyraseB inhibitors. Bioorg. Med. Chem. 2015;23:2062–2078. doi: 10.1016/j.bmc.2015.03.004. PubMed DOI
Madaiah M., Prashanth M.K., Revanasiddappa H.D., Veeresh B. Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis. New J. Chem. 2016;40:9194–9204. doi: 10.1039/C6NJ02069K. DOI
Brunner K., Maric S., Reshma R.S., Almqvist H., Seashore-Ludlow B., Gustavsson A.L., Poyraz O., Yogeeswari P., Lundback T., Vallin M., et al. Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant Mycobacterium tuberculosis. J. Med. Chem. 2016;59:6848–6859. doi: 10.1021/acs.jmedchem.6b00674. PubMed DOI
Dömling A., Achatz S., Beck B. Novel anti-tuberculosis agents from MCR libraries. Bioorg. Med. Chem. Lett. 2007;17:5483–5486. doi: 10.1016/j.bmcl.2007.04.066. PubMed DOI
Chopra S., Koolpe G.A., Tambo-ong A.A., Matsuyama K.N., Ryan K.J., Tran T.B., Doppalapudi R.S., Riccio E.S., Iyer L.V., Green C.E., et al. Discovery and Optimization of Benzotriazine Di-N-Oxides Targeting Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 2012;55:6047–6060. doi: 10.1021/jm300123s. PubMed DOI PMC
Marrakchi H., Lanéelle M.A., Daffé M. Mycolic Acids: Structures, Biosynthesis, and Beyond. Chem. Biol. 2014;21:67–85. doi: 10.1016/j.chembiol.2013.11.011. PubMed DOI
Talele T.T. The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016;59:8712–8756. doi: 10.1021/acs.jmedchem.6b00472. PubMed DOI
Rychtarčíková Z., Krátký M., Gazvoda M., Komlóová M., Polanc S., Kočevar M., Stolaříková J., Vinšová J. N-Substituted 2-Isonicotinoylhydrazinecarboxamides—New Antimycobacterial Active Molecules. Molecules. 2014;19:3851–3868. doi: 10.3390/molecules19043851. PubMed DOI PMC
Chiang H.C., Yao K.M., Huang K.F. Synthesis of nitrosourea analogs of some sulfa drugs. Proc. Natl. Sci. Counc. Repub. China B. 1984;8:18–22.
Gluncic B., Junasevic-Holjevac A., Grguric D., Gustak E. Note on the preparation on some disubstituted derivatives of p′p′-bis(sulfamoyl)carbanilides and their hydrolysis to corresponding sulphonamides. Croat. Chem. Acta. 1965;37:111–114.
Krátký M., Vinšová J., Novotná E., Mandíková J., Trejtnar F., Stolaříková J. Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC