Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents

. 2017 Mar 28 ; 22 (4) : . [epub] 20170328

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28350331

Infections caused by Mycobacterium tuberculosis (Mtb.) and nontuberculous mycobacteria (NTM) are considered to be a global health problem; current therapeutic options are limited. Sulfonamides have exhibited a wide range of biological activities including those against mycobacteria. Based on the activity of 4-(3-heptylureido)-N-(5-methylisoxazol-3-yl)benzenesulfonamide against NTM, we designed a series of homologous sulfamethoxazole-based n-alkyl ureas (C₁-C12), as well as several related ureas and an oxalamide. Fifteen ureas and one oxalamide were synthesized by five synthetic procedures and characterized. They were screened for their activity against Mtb. and three NTM strains (M. avium, M. kansasii). All of them share antimycobacterial properties with minimum inhibitory concentration (MIC) values starting from 2 µM. The highest activity showed 4,4'-[carbonylbis(azanediyl)]bis[N-(5-methylisoxazol-3-yl)benzenesulfonamide] with MIC of 2-62.5 µM (i.e., 1.07-33.28 µg/mL). Among n-alkyl ureas, methyl group is optimal for the inhibition of both Mtb. and NTM. Generally, longer alkyls led to increased MIC values, heptyl being an exception for NTM. Some of the novel derivatives are superior to parent sulfamethoxazole. Several urea and oxalamide derivatives are promising antimycobacterial agents with low micromolar MIC values.

Zobrazit více v PubMed

Krátký M., Mandíková J., Trejtnar F., Buchta V., Stolaříková J., Vinšová J. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidin-2,4,5-triones. Chem. Pap. 2015;69:1108–1117. doi: 10.1515/chempap-2015-0109. DOI

Brown-Elliott B.A., Nash K.A., Wallace R.J. Antimicrobial Susceptibility Testing, Drug Resistance Mechanisms, and Therapy of Infections with Nontuberculous Mycobacteria. Clin. Microbiol. Rev. 2012;25:545–582. doi: 10.1128/CMR.05030-11. PubMed DOI PMC

Ameen S.M., Drancourt M. In Vitro Susceptibility of Mycobacterium tuberculosis to Trimethoprim and Sulfonamides in France. Antimicrob. Agents Chemother. 2013;57:6370–6371. doi: 10.1128/AAC.01683-13. PubMed DOI PMC

Ameen S.M., Drancourt M. In vitro susceptibility of Mycobacterium avium complex mycobacteria to trimethoprim and sulfonamides. Int. J. Antimicrob. Agents. 2013;42:281–288. doi: 10.1016/j.ijantimicag.2013.05.006. PubMed DOI

Krátký M., Vinšová J., Volková M., Buchta V., Trejtnar F., Stolaříková J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem. 2012;50:433–440. doi: 10.1016/j.ejmech.2012.01.060. PubMed DOI

Chio L.C., Bolyard L.A., Nasr M., Queener S.F. Identification of a Class of Sulfonamides Highly Active against Dihydropteroate Synthase from Toxoplasma gondii, Pneumocystis carinii, and Mycobacterium avium. Antimicrob. Agents Chemother. 1996;40:727–733. PubMed PMC

Ceruso M., Vullo D., Scozzafava A., Supuran C.T. Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three β-class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2014;29:686–689. doi: 10.3109/14756366.2013.842233. PubMed DOI

Maresca A., Scozzafava A., Vullo D., Supuran C.T. Dihalogenated sulfanilamides and benzolamides are effective inhibitors of the three β-class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2013;28:384–387. doi: 10.3109/14756366.2011.645539. PubMed DOI

Patil V., Kale M., Raichurkar A., Bhaskar B., Prahlad D., Balganesh M., Nandan S., Hameed P.S. Design and synthesis of triazolopyrimidine acylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase. Bioorg. Med. Chem. Lett. 2014;24:2222–2225. doi: 10.1016/j.bmcl.2014.02.054. PubMed DOI

Abrahams K.A., Chung C.W., Ghidelli-Disse S., Rullas J., Rebollo-López M.J., Gurcha S.S., Cox J.A.G., Mendoza A., Jiménez-Navarro E., Martínez-Martínez M.S., et al. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat. Commun. 2016;7:12581. doi: 10.1038/ncomms12581. PubMed DOI PMC

Mishra C.B., Kumari S., Angeli A., Monti S.M., Buonanno M., Prakash A., Tiwari M., Supuran C.T. Design, synthesis and biological evaluation of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamides as human carbonic anhydrase isoenzymes I, II, VII and XII inhibitors. J. Enzyme Inhib. Med. Chem. 2016;31:174–179. doi: 10.1080/14756366.2016.1197221. PubMed DOI

Luzina E.L., Popov A.V. Synthesis, evaluation of anticancer activity and COMPARE analysis of N-bis(trifluoromethyl)alkyl-N′-substituted ureas with pharmacophoric moieties. Eur. J. Med. Chem. 2012;53:364–373. doi: 10.1016/j.ejmech.2012.03.026. PubMed DOI

Luzina E.L., Popov A.V. Synthesis of 3,3,3-trifluoroethyl isocyanate, carbamate and ureas. Anticancer activity evaluation of N-(3,3,3-trifluoroethyl)-N′-substituted ureas. J. Fluorine Chem. 2015;176:82–88. doi: 10.1016/j.jfluchem.2015.06.005. PubMed DOI PMC

Sunduru N., Salin O., Gylfe A., Elofsson M. Design, synthesis and evaluation of novel polypharmacological antichlamydial agents. Eur. J. Med. Chem. 2015;101:595–603. doi: 10.1016/j.ejmech.2015.07.019. PubMed DOI

Aly M.R.E., Gobouri A.A., Hafez S.H.A., Saad H.A. Synthesis, Reactions, and Biological Activity of Some Triazine Derivatives Containing Sulfa Drug Moieties. Russ. J. Bioorg. Chem. 2015;41:437–450. doi: 10.1134/S1068162015040032. PubMed DOI

Brown J.R., North E.J., Hurdle J.G., Morisseau C., Scarborough J.S., Sun D., Kordulakova J., Scherman M.S., Jones V., Grzegorzewicz A., et al. The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg. Med. Chem. 2011;19:5585–5595. doi: 10.1016/j.bmc.2011.07.034. PubMed DOI PMC

Medapi B., Renuka J., Saxena S., Sridevi J.P., Medishetti R., Kulkarni P., Yogeeswari P., Sriram D. Design and synthesis of novel quinoline–aminopiperidine hybrid analogues as Mycobacterium tuberculosis DNA gyraseB inhibitors. Bioorg. Med. Chem. 2015;23:2062–2078. doi: 10.1016/j.bmc.2015.03.004. PubMed DOI

Madaiah M., Prashanth M.K., Revanasiddappa H.D., Veeresh B. Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis. New J. Chem. 2016;40:9194–9204. doi: 10.1039/C6NJ02069K. DOI

Brunner K., Maric S., Reshma R.S., Almqvist H., Seashore-Ludlow B., Gustavsson A.L., Poyraz O., Yogeeswari P., Lundback T., Vallin M., et al. Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant Mycobacterium tuberculosis. J. Med. Chem. 2016;59:6848–6859. doi: 10.1021/acs.jmedchem.6b00674. PubMed DOI

Dömling A., Achatz S., Beck B. Novel anti-tuberculosis agents from MCR libraries. Bioorg. Med. Chem. Lett. 2007;17:5483–5486. doi: 10.1016/j.bmcl.2007.04.066. PubMed DOI

Chopra S., Koolpe G.A., Tambo-ong A.A., Matsuyama K.N., Ryan K.J., Tran T.B., Doppalapudi R.S., Riccio E.S., Iyer L.V., Green C.E., et al. Discovery and Optimization of Benzotriazine Di-N-Oxides Targeting Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 2012;55:6047–6060. doi: 10.1021/jm300123s. PubMed DOI PMC

Marrakchi H., Lanéelle M.A., Daffé M. Mycolic Acids: Structures, Biosynthesis, and Beyond. Chem. Biol. 2014;21:67–85. doi: 10.1016/j.chembiol.2013.11.011. PubMed DOI

Talele T.T. The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016;59:8712–8756. doi: 10.1021/acs.jmedchem.6b00472. PubMed DOI

Rychtarčíková Z., Krátký M., Gazvoda M., Komlóová M., Polanc S., Kočevar M., Stolaříková J., Vinšová J. N-Substituted 2-Isonicotinoylhydrazinecarboxamides—New Antimycobacterial Active Molecules. Molecules. 2014;19:3851–3868. doi: 10.3390/molecules19043851. PubMed DOI PMC

Chiang H.C., Yao K.M., Huang K.F. Synthesis of nitrosourea analogs of some sulfa drugs. Proc. Natl. Sci. Counc. Repub. China B. 1984;8:18–22.

Gluncic B., Junasevic-Holjevac A., Grguric D., Gustak E. Note on the preparation on some disubstituted derivatives of p′p′-bis(sulfamoyl)carbanilides and their hydrolysis to corresponding sulphonamides. Croat. Chem. Acta. 1965;37:111–114.

Krátký M., Vinšová J., Novotná E., Mandíková J., Trejtnar F., Stolaříková J. Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...