2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase

. 2019 Nov 05 ; 9 (11) : . [epub] 20191105

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31694272

The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer's disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman's spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5-228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine-an established cholinesterases inhibitor used in the treatment of Alzheimer's disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.

Zobrazit více v PubMed

Bondi M.W., Edmonds E.C., Salmon D.P. Alzheimer’s Disease: Past, Present, and Future. J. Int. Neuropsychol. Soc. 2017;23:818–831. doi: 10.1017/S135561771700100X. PubMed DOI PMC

Karlawish J., Jack C.R., Rocca W.A., Snyder H.M., Carrillo M.C. Alzheimer’s disease: The next frontier-Special Report 2017. Alzheimers Dement. 2017;13:374–380. doi: 10.1016/j.jalz.2017.02.006. PubMed DOI

World Alzheimer Report 2018. [(accessed on 20 June 2019)]; Available online: https://www.alz.co.uk/research/world-report-2018.

Sawatzky E., Wehle S., Kling B., Wendrich J., Bringmann G., Sotriffer C.A., Heilmann J., Decker M. Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode. J. Med. Chem. 2016;59:2067–2082. doi: 10.1021/acs.jmedchem.5b01674. PubMed DOI

Darvesh S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:1173–1177. doi: 10.2174/1567205013666160404120542. PubMed DOI

García-Ayllón M.-S., Small D.H., Avila J., Saez-Valero J. Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-Talk with P-tau and β-Amyloid. Front. Molec. Neurosci. 2011;4:22. doi: 10.3389/fnmol.2011.00022. PubMed DOI PMC

Li Q., Yang H.Y., Chen Y., Sun H.P. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem. 2017;132:294–309. doi: 10.1016/j.ejmech.2017.03.062. PubMed DOI

Mehta M., Adem A., Sabbagh M. New Acetylcholinesterase Inhibitors for Alzheimer’s Disease. Int. J. Alzheimers Dis. 2012;2012:728983. doi: 10.1155/2012/728983. PubMed DOI PMC

Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Horáková E., Drabina P., Brož B., Štěpánková Š., Vorčáková K., Královec K., Havelek R., Sedlák M. Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates as acetyl- and butyrylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem. 2016;31:173–179. doi: 10.1080/14756366.2016.1212193. PubMed DOI

Carrarini C., Russo M., Dono F., Di Pietro M., Rispoli M.G., Di Stefano V., Ferri L., Barbone F., Vitale M., Thomas A., et al. A Stage-Based Approach to Therapy in Parkinson’s Disease. Biomolecules. 2019;9:388. doi: 10.3390/biom9080388. PubMed DOI PMC

Bohnen N.I., Grothe M.J., Ray N.J., Müller M.L.T.M., Teipel S.J. Recent Advances in Cholinergic Imaging and Cognitive Decline—Revisiting the Cholinergic Hypothesis of Dementia. Curr. Geri. Rep. 2018;7:1–11. doi: 10.1007/s13670-018-0234-4. PubMed DOI PMC

Liu Z., Zhang A., Sun H., Han Y., Kong L., Wang X. Two decades of new drug discovery and development for Alzheimer’s disease. RSC Adv. 2017;7:6046–6058. doi: 10.1039/C6RA26737H. DOI

Krátký M., Vinšová J. Salicylanilide ester prodrugs as potential antimicrobial agents–a review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Paraskevopoulos G., Monteiro S., Vosátka R., Krátký M., Navrátilová L., Trejtnar F., Stolaříková J., Vinšová J. Novel salicylanilides from 4,5-dihalogenated salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorg. Med. Chem. 2017;25:1524–1532. doi: 10.1016/j.bmc.2017.01.016. PubMed DOI

Krátký M., Vinšová J. Salicylanilide N-monosubstituted carbamates: Synthesis and in vitro antimicrobial activity. Bioorg. Med. Chem. 2016;24:1322–1330. doi: 10.1016/j.bmc.2016.02.004. PubMed DOI

Vinšová J., Kozic J., Krátký M., Stolaříková J., Mandíková J., Trejtnar F., Buchta V. Salicylanilide diethyl phosphates: Synthesis, antimicrobial activity and cytotoxicity. Bioorg. Med. Chem. 2014;22:728–737. doi: 10.1016/j.bmc.2013.12.016. PubMed DOI

Krátký M., Vinšová J., Stolaříková J. Antimycobacterial Assessment of Salicylanilide Benzoates including Multidrug-Resistant Tuberculosis Strains. Molecules. 2012;17:12812–12820. doi: 10.3390/molecules171112812. PubMed DOI PMC

Swan G.E. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals. J. S. Afr. Vet. Assoc. 1999;70:61–70. doi: 10.4102/jsava.v70i2.756. PubMed DOI

Rajamuthiah R., Fuchs B.B., Conery A.L., Kim W., Jayamani E., Kwon B., Ausubel F.M., Mylonakis E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS ONE. 2015;10:e0124595. doi: 10.1371/journal.pone.0124595. PubMed DOI PMC

Garcia C., Burgain A., Chaillot J., Pic E., Khemiri I., Sellam A. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci. Rep. 2018;8:11559. doi: 10.1038/s41598-018-29973-8. PubMed DOI PMC

Krátký M., Štěpánková Š., Vorčáková K., Vinšová J. Salicylanilide Diethyl Phosphates as Cholinesterases Inhibitors. Bioorg. Med. Chem. 2015;58:48–52. doi: 10.1016/j.bioorg.2014.11.005. PubMed DOI

Krátký M., Vorčáková K., Vinšová J., Štěpánková Š. Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Bioorg. Chem. 2018;80:668–673. doi: 10.1016/j.bioorg.2018.07.017. PubMed DOI

Krátký M., Štěpánková Š., Vorčáková K., Švarcová M., Vinšová J. Novel Cholinesterases Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates. Molecules. 2016;21:191. doi: 10.3390/molecules21020191. PubMed DOI PMC

Vinšová J., Krátký M., Komlóová M., Dadapeer E., Štěpánková Š., Vorčáková K., Stolaříková J. Diethyl 2-(Phenylcarbamoyl)phenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition. Molecules. 2014;19:7152–7168. doi: 10.3390/molecules19067152. PubMed DOI PMC

Krátký M., Vinšová J. Antifungal Activity of Salicylanilides and Their Esters with 4-(Trifluoromethyl)benzoic Acid. Molecules. 2012;17:9426–9442. doi: 10.3390/molecules17089426. PubMed DOI PMC

Lee I.Y., Gruber T.D., Samuels A., Yun M., Nam B., Kang M., Crowley K., Winterroth B., Boshoff H.I., Barry C.E. Structure-activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. Bioorg. Med. Chem. 2013;21:114–126. doi: 10.1016/j.bmc.2012.10.056. PubMed DOI PMC

Institute of Medicinal Molecular Design, Inc. Muto S., Itai A. Inhibitors against the Production and Release of Inflammatory Cytokines. No. EP1512396, A1. Patent. 2005 Mar 9;

Geigy A.G., Bindler J., Model E. Poly Halo-Salicylanilides. No. US2703332 (A) Patent. 1955 Mar 1;

Charles University, Faculty of Pharmacy in Hradec Králové. Vinšová J., Krátký M., Paraskevopoulos G. Substituted derivative of oxyphosphorus acids, its use and pharmaceutical preparation containing it. No. WO 2016095878 A1. Patent Application. 2016 Jun 23;

Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. C. 2004;59:293–296. doi: 10.1515/znc-2004-3-430. PubMed DOI

Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. doi: 10.1016/j.ab.2007.07.023. PubMed DOI

Lineweaver H., Burk D. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI

Kandiah N., Pai M.C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC

Szedlacsek S.E., Duggleby R.G. [6] Kinetics of slow and tight-binding inhibitors. Methods Enzymol. 1995;249:144–180. PubMed

Singh J., Petter R.C., Bailli T.A., Whitty A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 2011;10:307–317. doi: 10.1038/nrd3410. PubMed DOI

Jann M.W., Shirley K.L., Small G.W. Clinical Pharmacokinetics and Pharmacodynamics of Cholinesterase Inhibitors. Clin. Pharmacokinet. 2002;41:719–739. doi: 10.2165/00003088-200241100-00003. PubMed DOI

Bartolini M., Cavrini V., Andrisano V. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. Chromatogr. A. 2007;1144:102–110. doi: 10.1016/j.chroma.2006.11.029. PubMed DOI

Biochemistry. Fourth edition. [(accessed on 20 June 2019)]; Available online: http://gtu.ge/Agro-Lib/Reginald%20H.%20Garrett,%20Charles%20M.%20Grisham%20-%20Biochemistry%20(4th%20ed.)%20-%202010.pdf.

Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug. Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Zhang X., Zhang Y., Zhang T., Zhang J., Wu B. Significantly enhanced bioavailability of niclosamide through submicron lipid emulsions with or without PEG-lipid: A comparative study. J. Microencapsul. 2015;32:496–502. doi: 10.3109/02652048.2015.1057251. PubMed DOI

Hitchcock S.A., Pennington L.D. Structure-Brain Exposure Relationships. J. Med. Chem. 2006;49:7559–7583. doi: 10.1021/jm060642i. PubMed DOI

Ghose A.K., Herbertz T., Hudkins R.L., Dorsey B.D., Mallamo J.P. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery. ACS Chem. Neurosci. 2012;3:50–68. doi: 10.1021/cn200100h. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace