Antimycobacterial assessment of Salicylanilide benzoates including multidrug-resistant tuberculosis strains

. 2012 Oct 31 ; 17 (11) : 12812-20. [epub] 20121031

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23114617

The increasing emergence especially of drug-resistant tuberculosis has led to a strong demand for new anti-tuberculosis drugs. Eighteen salicylanilide benzoates were evaluated for their inhibition potential against Mycobacterium tuberculosis, Mycobacterium avium and two strains of Mycobacterium kansasii; minimum inhibitory concentration values ranged from 0.5 to 16 μmol/L. The most active esters underwent additional biological assays. Four benzoates inhibited effectively the growth of five multidrug-resistant strains and one extensively drug-resistant strain of M. tuberculosis at low concentrations (0.25–2 μmol/L) regardless of the resistance patterns. The highest rate of multidrug-resistant mycobacteria inhibition expressed 4-chloro-2-[4-(trifluoromethyl)-phenylcarbamoyl]phenyl benzoate (0.25–1 μmol/L). Unfortunately, the most potent esters were still considerably cytotoxic, although mostly less than their parent salicylanilides.

Zobrazit více v PubMed

Krátký M., Vinšová J. Advances in the Development of Antituberculotics Acting on Multidrug-Resistant Strains. Chem. Listy. 2010;104:998–1005.

Sturdy A., Goodman A., Jose R.J., Loyse A., O’Donoghue M., Kon O.M., Dedicoat M.J., Harrison T.S., John L., Lipman M., et al. Multidrug-resistant tuberculosis (MDR-TB) treatment in the UK: A study of injectable use and toxicity in practice. J. Antimicrob. Chemother. 2011;66:1815–1820. PubMed

La Rosa V., Poce G., Canseco J.O., Buroni S., Pasca M.R., Biava M., Raju R.M., Porretta G.C., Alfonso S., Battilocchio C., et al. MmpL3 Is the Cellular Target of the Antitubercular Pyrrole Derivative BM212. Antimicrob. Agents Chemother. 2012;56:324–331. PubMed PMC

Grzegorzewicz A.E., Pham H., Gundi V.A.K.B., Scherman M.S., North E.J., Hess T., Jones V., Gruppo V., Born S.E.M., Kordulakova J., et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol. 2012;8:334–341. doi: 10.1038/nchembio.794. PubMed DOI PMC

Batt S.M., Jabeen T., Bhowruth V., Quill L., Lund P.A., Eggeling L., Alderwick L.J., Futterer K., Besra G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA. 2012;109:11354–11359. PubMed PMC

Cook J.L. Nontuberculous mycobacteria: Opportunistic environmental pathogens for predisposed hosts. Br. Med. Bull. 2010;96:45–59. doi: 10.1093/bmb/ldq035. PubMed DOI

Krátký M., Vinšová J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide Acetates: Synthesis and Antibacterial Evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC

Férriz J.M., Vávrová K., Kunc F., Imramovský A., Stolaříková J., Vavříková E., Vinšová J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. PubMed

Krátký M., Vinšová J., Buchta V., Horvati K., Bösze S., Stolaříková J. New amino acid esters ofsalicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010;45:6106–6113. doi: 10.1016/j.ejmech.2010.09.040. PubMed DOI

Imramovský A., Vinšová J., Férriz J.M., Doležal R., Jampílek J., Kaustová J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Krátký M., Vinšová J., Rodriguez N.G., Stolaříková J. Antimycobacterial Activity of Salicylanilide Benzenesulfonates. Molecules. 2012;17:492–503. doi: 10.3390/molecules17010492. PubMed DOI PMC

Mathew R., Kruthiventi A.K., Prasad J.V., Kumar S.P., Srinu G., Chatterji D. Inhibition of Mycobacterial Growth by Plumbagin Derivatives. Chem. Biol. Drug Des. 2010;76:34–42. doi: 10.1111/j.1747-0285.2010.00987.x. PubMed DOI

Muddassar M., Jang J.W., Gon H.S., Cho Y.S., Kim E.E., Keum K.C., Oh T., Cho S.N., Pae A.N. Identification of novel antitubercular compounds through hybrid virtual screening approach. Bioorg. Med. Chem. 2010;18:6914–6921. doi: 10.1016/j.bmc.2010.07.010. PubMed DOI

Gu P., Constantino L., Zhang Y. Enhancement of the antituberculosis activity of weak acids by inhibitors of energy metabolism but not by anaerobiosis suggests that weak acids act differently from the front-line tuberculosis drug pyrazinamide. J. Med. Microbiol. 2008;57:1129–1134. doi: 10.1099/jmm.0.2008/000786-0. PubMed DOI

Krátký M., Vinšová J., Novotná E., Mandíková J., Wsól V., Trejtnar F., Ulmann V., Stolaříková J., Fernandes S., Bhat S., Liu J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI

Krátký M., Vinšová J., Buchta V. In Vitro Antibacterial and Antifungal Activity of Salicylanilide Benzoates. ScientificWorldJournal. 2012;2012:290628. PubMed PMC

Waisser K., Bureš O., Holý P., Kuneš J., Oswald R., Jirásková L., Pour M., Klimešová V., Kubicová L., Kaustová J. Relationship between the Structure and Antimycobacterial Activity of Substituted Salicylanilides. Arch. Pharm. Pharm. Med. Chem. 2003;336:53–71. doi: 10.1002/ardp.200390004. PubMed DOI

Hilliard J.J., Goldschmidt R.M., Licata L., Baum E.Z., Bush K. Multiple Mechanisms of Action for Inhibitors of Histidine Protein Kinases from Bacterial Two-Component Systems. Antimicrob. Agents Chemother. 1999;43:1693–1699. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace