Antimycobacterial assessment of Salicylanilide benzoates including multidrug-resistant tuberculosis strains
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23114617
PubMed Central
PMC6268668
DOI
10.3390/molecules171112812
PII: molecules171112812
Knihovny.cz E-resources
- MeSH
- Antitubercular Agents pharmacology toxicity MeSH
- Benzoates pharmacology toxicity MeSH
- Hep G2 Cells MeSH
- Inhibitory Concentration 50 MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Drug Resistance, Multiple, Bacterial MeSH
- Mycobacterium avium drug effects MeSH
- Mycobacterium kansasii drug effects MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Salicylanilides pharmacology toxicity MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antitubercular Agents MeSH
- Benzoates MeSH
- Salicylanilides MeSH
The increasing emergence especially of drug-resistant tuberculosis has led to a strong demand for new anti-tuberculosis drugs. Eighteen salicylanilide benzoates were evaluated for their inhibition potential against Mycobacterium tuberculosis, Mycobacterium avium and two strains of Mycobacterium kansasii; minimum inhibitory concentration values ranged from 0.5 to 16 μmol/L. The most active esters underwent additional biological assays. Four benzoates inhibited effectively the growth of five multidrug-resistant strains and one extensively drug-resistant strain of M. tuberculosis at low concentrations (0.25–2 μmol/L) regardless of the resistance patterns. The highest rate of multidrug-resistant mycobacteria inhibition expressed 4-chloro-2-[4-(trifluoromethyl)-phenylcarbamoyl]phenyl benzoate (0.25–1 μmol/L). Unfortunately, the most potent esters were still considerably cytotoxic, although mostly less than their parent salicylanilides.
See more in PubMed
Krátký M., Vinšová J. Advances in the Development of Antituberculotics Acting on Multidrug-Resistant Strains. Chem. Listy. 2010;104:998–1005.
Sturdy A., Goodman A., Jose R.J., Loyse A., O’Donoghue M., Kon O.M., Dedicoat M.J., Harrison T.S., John L., Lipman M., et al. Multidrug-resistant tuberculosis (MDR-TB) treatment in the UK: A study of injectable use and toxicity in practice. J. Antimicrob. Chemother. 2011;66:1815–1820. PubMed
La Rosa V., Poce G., Canseco J.O., Buroni S., Pasca M.R., Biava M., Raju R.M., Porretta G.C., Alfonso S., Battilocchio C., et al. MmpL3 Is the Cellular Target of the Antitubercular Pyrrole Derivative BM212. Antimicrob. Agents Chemother. 2012;56:324–331. PubMed PMC
Grzegorzewicz A.E., Pham H., Gundi V.A.K.B., Scherman M.S., North E.J., Hess T., Jones V., Gruppo V., Born S.E.M., Kordulakova J., et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol. 2012;8:334–341. doi: 10.1038/nchembio.794. PubMed DOI PMC
Batt S.M., Jabeen T., Bhowruth V., Quill L., Lund P.A., Eggeling L., Alderwick L.J., Futterer K., Besra G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA. 2012;109:11354–11359. PubMed PMC
Cook J.L. Nontuberculous mycobacteria: Opportunistic environmental pathogens for predisposed hosts. Br. Med. Bull. 2010;96:45–59. doi: 10.1093/bmb/ldq035. PubMed DOI
Krátký M., Vinšová J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide Acetates: Synthesis and Antibacterial Evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC
Férriz J.M., Vávrová K., Kunc F., Imramovský A., Stolaříková J., Vavříková E., Vinšová J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. PubMed
Krátký M., Vinšová J., Buchta V., Horvati K., Bösze S., Stolaříková J. New amino acid esters ofsalicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010;45:6106–6113. doi: 10.1016/j.ejmech.2010.09.040. PubMed DOI
Imramovský A., Vinšová J., Férriz J.M., Doležal R., Jampílek J., Kaustová J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Krátký M., Vinšová J., Rodriguez N.G., Stolaříková J. Antimycobacterial Activity of Salicylanilide Benzenesulfonates. Molecules. 2012;17:492–503. doi: 10.3390/molecules17010492. PubMed DOI PMC
Mathew R., Kruthiventi A.K., Prasad J.V., Kumar S.P., Srinu G., Chatterji D. Inhibition of Mycobacterial Growth by Plumbagin Derivatives. Chem. Biol. Drug Des. 2010;76:34–42. doi: 10.1111/j.1747-0285.2010.00987.x. PubMed DOI
Muddassar M., Jang J.W., Gon H.S., Cho Y.S., Kim E.E., Keum K.C., Oh T., Cho S.N., Pae A.N. Identification of novel antitubercular compounds through hybrid virtual screening approach. Bioorg. Med. Chem. 2010;18:6914–6921. doi: 10.1016/j.bmc.2010.07.010. PubMed DOI
Gu P., Constantino L., Zhang Y. Enhancement of the antituberculosis activity of weak acids by inhibitors of energy metabolism but not by anaerobiosis suggests that weak acids act differently from the front-line tuberculosis drug pyrazinamide. J. Med. Microbiol. 2008;57:1129–1134. doi: 10.1099/jmm.0.2008/000786-0. PubMed DOI
Krátký M., Vinšová J., Novotná E., Mandíková J., Wsól V., Trejtnar F., Ulmann V., Stolaříková J., Fernandes S., Bhat S., Liu J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI
Krátký M., Vinšová J., Buchta V. In Vitro Antibacterial and Antifungal Activity of Salicylanilide Benzoates. ScientificWorldJournal. 2012;2012:290628. PubMed PMC
Waisser K., Bureš O., Holý P., Kuneš J., Oswald R., Jirásková L., Pour M., Klimešová V., Kubicová L., Kaustová J. Relationship between the Structure and Antimycobacterial Activity of Substituted Salicylanilides. Arch. Pharm. Pharm. Med. Chem. 2003;336:53–71. doi: 10.1002/ardp.200390004. PubMed DOI
Hilliard J.J., Goldschmidt R.M., Licata L., Baum E.Z., Bush K. Multiple Mechanisms of Action for Inhibitors of Histidine Protein Kinases from Bacterial Two-Component Systems. Antimicrob. Agents Chemother. 1999;43:1693–1699. PubMed PMC
2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase
Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates