LH1-RC complex
Dotaz
Zobrazit nápovědu
RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2-Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.
- MeSH
- bakteriochlorofyly metabolismus MeSH
- fluorescenční spektrometrie MeSH
- karotenoidy metabolismus MeSH
- kinetika MeSH
- počítačové zpracování signálu MeSH
- přenos energie * MeSH
- Rhodobacter sphaeroides metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- xanthofyly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Light-harvesting capacity was investigated in six species of aerobic anoxygenic phototrophic (AAP) bacteria using absorption spectroscopy, fluorescence emission spectroscopy, and pigment analyses. Aerobically grown AAP cells contained approx. 140-1800 photosynthetic reaction centers per cell, an order of magnitude less than purple non-sulfur bacteria grown semiaerobically. Three of the studied AAP species did not contain outer light-harvesting complexes, and the size of their reaction center core complexes (RC-LH1 core complexes) varied between 29 and 36 bacteriochlorophyll molecules. In AAP species containing accessory antennae, the size was frequently reduced, providing between 5 and 60 additional bacteriochlorophyll molecules. In Roseobacter litoralis, it was found that cells grown at a higher light intensity contained more reaction centers per cell, while the size of the light-harvesting complexes was reduced. The presented results document that AAP species have both the reduced number and size of light-harvesting complexes which is consistent with the auxiliary role of phototrophy in this bacterial group.
- MeSH
- aerobióza MeSH
- Alphaproteobacteria chemie metabolismus MeSH
- bakteriochlorofyly metabolismus MeSH
- fotosyntetická reakční centra (proteinové komplexy) chemie metabolismus MeSH
- fototrofní procesy MeSH
- Gammaproteobacteria chemie metabolismus MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Magnesium (Mg2+) is the ubiquitous metal ion present in chlorophyll and bacteriochlorophyll (BChl), involved in photosystems in photosynthetic organisms. In the present study we investigated targets of toxic copper binding to the photosynthetic apparatus of the anoxygenic purple bacterium Rhodospirillum rubrum. This was done by a combination of in vivo measurements of flash photolysis and fast fluorescence kinetics combined with the analysis of metal binding to pigments and pigment-protein complexes isolated from Cu-stressed cells by HPLC-ICPMS (ICP-sfMS). This work concludes that R. rubrum is highly sensitive to Cu2+, with a strong inhibition of the photosynthetic reaction centres (RCs) already at 2 μM Cu2+. The inhibition of growth and of RC activity was related to the formation of Cu-containing BChl degradation products that occurred much more in the RC than in LH1. These results suggest that the shift of metal centres in BChl from Mg2+ to Cu2+ can occur in vivo in the RCs of R. rubrum under environmentally realistic Cu2+ concentrations, leading to a strong inhibition of the function of these RCs.
Carotenoids are known to offer protection against the potentially damaging combination of light and oxygen encountered by purple phototrophic bacteria, but the efficiency of such protection depends on the type of carotenoid. Rhodobacter sphaeroides synthesizes spheroidene as the main carotenoid under anaerobic conditions whereas, in the presence of oxygen, the enzyme spheroidene monooxygenase catalyses the incorporation of a keto group forming spheroidenone. We performed ultrafast transient absorption spectroscopy on membranes containing reaction center-light-harvesting 1-PufX (RC-LH1-PufX) complexes and showed that when oxygen is present the incorporation of the keto group into spheroidene, forming spheroidenone, reconfigures the energy transfer pathway in the LH1, but not the LH2, antenna. The spheroidene/spheroidenone transition acts as a molecular switch that is suggested to twist spheroidenone into an s-trans configuration increasing its conjugation length and lowering the energy of the lowest triplet state so it can act as an effective quencher of singlet oxygen. The other consequence of converting carotenoids in RC-LH1-PufX complexes is that S(2)/S(1)/triplet pathways for spheroidene is replaced with a new pathway for spheroidenone involving an activated intramolecular charge-transfer (ICT) state. This strategy for RC-LH1-PufX-spheroidenone complexes maintains the light-harvesting cross-section of the antenna by opening an active, ultrafast S(1)/ICT channel for energy transfer to LH1 Bchls while optimizing the triplet energy for singlet oxygen quenching. We propose that spheroidene/spheroidenone switching represents a simple and effective photoprotective mechanism of likely importance for phototrophic bacteria that encounter light and oxygen.
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- bakteriochlorofyly chemie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- karotenoidy chemie metabolismus MeSH
- kyslík metabolismus MeSH
- molekulární struktura MeSH
- přenos energie účinky záření MeSH
- Proteobacteria chemie metabolismus MeSH
- Rhodobacter sphaeroides chemie metabolismus MeSH
- spektrofotometrie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.
In almost all photosynthetic organisms the photosynthetic pigments chlorophyll and bacteriochlorophyll (BChl) are Mg2+ containing complexes, but Mg2+ may be exchanged against other metal ions when these are present in toxic concentrations, leading to inactivation of photosynthesis. In this report we studied mechanisms of copper toxicity to the photosynthetic apparatus of Acidiphilium rubrum, an acidophilic purple bacterium that uses Zn2+ instead of Mg2+ as the central metal in the BChl molecules ([Zn]-BChl) of its reaction centres (RCs) and light harvesting proteins (LH1). We used a combination of in vivo measurements of photosynthetic activity (fast fluorescence and absorption kinetics) together with analysis of metal binding to pigments and pigment-protein complexes by HPLC-ICP-sfMS to monitor the effect of Cu2+ on photosynthesis of A. rubrum. Further, we found that its cytoplasmic pH is neutral. We compared these results with those obtained from Rhodospirillum rubrum, a purple bacterium for which we previously reported that the central Mg2+ of BChl can be replaced in vivo in the RCs by Cu2+ under environmentally realistic Cu2+ concentrations, leading to a strong inhibition of photosynthesis. Thus, we observed that A. rubrum is much more resistant to copper toxicity than R. rubrum. Only slight changes of photosynthetic parameters were observed in A. rubrum at copper concentrations that were severely inhibitory in R. rubrum and in A. rubrum no copper complexes of BChl were found. Altogether, the data suggest that [Zn]-BChl protects the photosynthetic apparatus of A. rubrum from detrimental insertion of Cu2+ (trans-metallation) into BChl molecules of its RCs.
- MeSH
- Acidiphilium chemie MeSH
- bakteriochlorofyl A chemie MeSH
- fotosyntéza MeSH
- hmotnostní spektrometrie MeSH
- hořčík chemie MeSH
- koncentrace vodíkových iontů MeSH
- měď chemie toxicita MeSH
- Rhodospirillum rubrum chemie MeSH
- světlosběrné proteinové komplexy chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zinek chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH