bacteria–algae interaction
Dotaz
Zobrazit nápovědu
With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
- MeSH
- Bacteria * metabolismus účinky léků MeSH
- biodegradace * MeSH
- Eukaryota metabolismus účinky léků MeSH
- houby metabolismus MeSH
- kadmium * metabolismus toxicita MeSH
- látky znečišťující půdu * metabolismus MeSH
- olovo * metabolismus toxicita MeSH
- rostliny mikrobiologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 μg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.
- MeSH
- biomasa MeSH
- Caco-2 buňky MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- lipopolysacharidy * toxicita MeSH
- sinice * MeSH
- škodlivý vodní květ MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The N2-fixing cyanobacterium Trichodesmium is an important player in the oceanic nitrogen and carbon cycles. Trichodesmium occurs both as single trichomes and as colonies containing hundreds of trichomes. In this review, we explore the benefits and disadvantages of colony formation, considering physical, chemical, and biological effects from nanometer to kilometer scale. Showing that all major life challenges are affected by colony formation, we claim that Trichodesmium's ecological success is tightly linked to its colonial lifestyle. Microbial interactions in the microbiome, chemical gradients within the colony, interactions with particles, and elevated mobility in the water column shape a highly dynamic microenvironment. We postulate that these dynamics are key to the resilience of Trichodesmium and other colony formers in our changing environment.
- MeSH
- fixace dusíku MeSH
- oceány a moře MeSH
- sinice * MeSH
- sociální chování MeSH
- Trichodesmium * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- oceány a moře MeSH
Cardiolipins (1,3-bis(sn-3'-phosphatidyl)-sn-glycerol) (CLs) are widespread in many organisms, from bacteria to higher green plants and mammals. CLs were observed in Gram-positive bacterium of the genus Kocuria, brewer's yeast Saccharomyces, the green alga Chlamydomonas, spinach and beef heart. A mixture of molecular species of CLs was obtained from total lipids by hydrophilic interaction liquid chromatography (HILIC), and these were further separated and identified by reversed phase LC/MS with negative tandem electrospray ionization. The majority of CLs molecular species from each organism were cleaved using phospholipase C from Bacillus cereus. This phospholipase cleaves CLs into 1,2-diglycerols and phosphatidylglycerol 3-phosphates, which were then separated. After CLs cleavage, diacylglycerols such as sn-1,2-diacyl-3-acetyl-glycerols (i.e., triacylglycerols) were separated and identified by chiral chromatography/MS-positive tandem ESI. Significant differences in the composition of the molecular species between the 3-(3-sn-phosphatidyl) and 1-(3-sn-phosphatidyl) moieties of CLs were found in all organisms tested. Molecular species of CLs that contained four different fatty acids were identified in all five samples, and CLs containing very long chain fatty acids were identified in yeast. In addition, CLs containing both enantiomers (at the sn-2 carbon) were present in the bacterium tested. These findings were further supported by data already published in GenBank where, in the same family - Micrococcaceae - both enzymes responsible for chirality in the sn-2 position, glycerol-3-phosphate and glycerol-1-phosphate dehydrogenases, were present.
- MeSH
- chemická frakcionace MeSH
- Chlamydomonas reinhardtii chemie MeSH
- chromatografie kapalinová metody MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydrolýza MeSH
- kardiolipiny chemie MeSH
- mastné kyseliny analýza MeSH
- skot MeSH
- stereoizomerie MeSH
- triglyceridy chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In the last decade, it has become evident that complex mixtures of cyanobacterial bioactive substances, simultaneously present in blooms, often exert adverse effects that are different from those of pure cyanotoxins, and awareness has been raised on the importance of studying complex mixtures and chemical interactions. We aimed to investigate cytotoxic and genotoxic effects of complex extracts from laboratory cultures of cyanobacterial species from different orders (Cylindrospermopsis raciborskii, Aphanizomenon gracile, Microcystis aeruginosa, M. viridis, M. ichtyoblabe, Planktothrix agardhii, Limnothrix redekei) and algae (Desmodesmus quadricauda), and examine possible relationships between the observed effects and toxin and retinoic acid (RA) content in the extracts. The cytotoxic and genotoxic effects of the extracts were studied in the human hepatocellular carcinoma HepG2 cell line, using the MTT assay, and the comet and cytokinesis-block micronucleus (cytome) assays, respectively. Liquid chromatography electrospray ionization mass spectrometry (LC/ESI-MS) was used to detect toxins (microcystins (MC-LR, MC-RR, MC-YR) and cylindrospermopsin) and RAs (ATRA and 9cis-RA) in the extracts. Six out of eight extracts were cytotoxic (0.04-2 mgDM/mL), and five induced DNA strand breaks at non-cytotoxic concentrations (0.2-2 mgDM/mL). The extracts with genotoxic activity also had the highest content of RAs and there was a linear association between RA content and genotoxicity, indicating their possible involvement; however further research is needed to identify and confirm the compounds involved and to elucidate possible genotoxic effects of RAs.
- MeSH
- alkaloidy izolace a purifikace toxicita MeSH
- buňky Hep G2 MeSH
- Chlorophyta metabolismus MeSH
- chromatografie kapalinová MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kometový test MeSH
- lidé MeSH
- mikrocystiny izolace a purifikace toxicita MeSH
- mikrojaderné testy MeSH
- mikrojádra chromozomálně defektní chemicky indukované MeSH
- poškození DNA * MeSH
- sinice metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- tretinoin izolace a purifikace toxicita MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is now accepted that reactive oxygen species (ROS) are not only dangerous oxidative agents but also chemical mediators of the redox cell signaling and innate immune response. A central role in ROS-controlled production is played by the NADPH oxidases (NOXs), a group of seven membrane-bound enzymes (NOX1-5 and DUOX1-2) whose unique function is to produce ROS. Here, we describe the regulation of NOX5, a widespread family member present in cyanobacteria, protists, plants, fungi, and the animal kingdom. We show that the calmodulin-like regulatory EF-domain of NOX5 is partially unfolded and detached from the rest of the protein in the absence of calcium. In the presence of calcium, the C-terminal lobe of the EF-domain acquires an ordered and more compact structure that enables its binding to the enzyme dehydrogenase (DH) domain. Our spectroscopic and mutagenesis studies further identified a set of conserved aspartate residues in the DH domain that are essential for NOX5 activation. Altogether, our work shows that calcium induces an unfolded-to-folded transition of the EF-domain that promotes direct interaction with a conserved regulatory region, resulting in NOX5 activation.
- MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- NADPH-oxidasa 5 chemie genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- sinice enzymologie MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cyanobacteria are known for their ability to produce and release mixtures of up to thousands of compounds into the environment. Recently, the production of novel metabolites, retinoids, was reported for some cyanobacterial species along with teratogenic effects of samples containing these compounds. Retinoids are natural endogenous substances derived from vitamin A that play a crucial role in early vertebrate development. Disruption of retinoid signalling- especially during the early development of the nervous system- might lead to major malfunctions and malformations. In this study, the toxicity of cyanobacterial biomass samples from the field containing retinoids was characterized by in vivo and in vitro bioassays with a focus on the potential hazards towards nervous system development and function. Additionally, in order to identify the compounds responsible for the observed in vitro and in vivo effects the complex cyanobacterial extracts were fractionated (C18 column, water-methanol gradient) and the twelve obtained fractions were tested in bioassays. In all bioassays, all-trans retinoic acid (ATRA) was tested along with the environmental samples as a positive control. Retinoid-like activity (mediated via the retinoic acid receptor, RAR) was measured in the transgenic cell line p19/A15. The in vitro assay showed retinoid-like activity by specific interaction with RAR for the biomass samples. Neurotoxic effects of selected samples were studied on zebrafish (Danio rerio) embryos using the light/dark transition test (Viewpoint, ZebraLab system) with 120 hpf larvae. In the behavioural assay, the cyanobacterial extracts caused significant hyperactivity in zebrafish at 120 hpf after acute exposure (3 h prior to the measurement) at concentrations below the teratogenicity LOEC (0.2 g dw L-1). Similar effect was observed after exposure to fractions of the extracts with detected retinoid-like activity and additive effect was observed after combining the fractions. However, the effect on behaviour was not observed after exposure to ATRA only. To provide additional insight into the behavioural effects and describe the underlying mechanism gene expression of selected biomarkers was measured. We evaluated an array of 28 genes related to general toxicity, neurodevelopment, retinoid and thyroid signalling. We detected several affected genes, most notably, the Cyp26 enzymes that control endogenous ATRA concentration, which documents an effect on retinoid signalling.
- MeSH
- biomasa MeSH
- biotest MeSH
- chemické látky znečišťující vodu metabolismus toxicita MeSH
- chování zvířat účinky léků MeSH
- dánio pruhované růst a vývoj metabolismus MeSH
- embryo nesavčí účinky léků metabolismus MeSH
- exprese genu účinky léků MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- receptory kyseliny retinové genetika metabolismus MeSH
- sinice růst a vývoj metabolismus MeSH
- tretinoin metabolismus toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The Helical Carotenoid Proteins (HCPs) are a large group of newly identified carotenoid-binding proteins found in ecophysiologically diverse cyanobacteria. They likely evolved before becoming the effector (quenching) domain of the modular Orange Carotenoid Protein (OCP). The number of discrete HCP families-at least nine-suggests they are involved in multiple distinct functions. Here we report the 1.7 Å crystal structure of HCP2, one of the most widespread HCPs found in nature, from the chromatically acclimating cyanobacterium Tolypothrix sp. PCC 7601. By purifying HCP2 from the native source we are able to identify its natively-bound carotenoid, which is exclusively canthaxanthin. In solution, HCP2 is a monomer with an absorbance maximum of 530 nm. However, the HCP2 crystals have a maximum absorbance at 548 nm, which is accounted by the stacking of the β1 rings of the carotenoid in the two molecules in the asymmetric unit. Our results demonstrate how HCPs provide a valuable system to study carotenoid-protein interactions and their spectroscopic implications, and contribute to efforts to understand the functional roles of this large, newly discovered family of pigment proteins, which to-date remain enigmatic.
- MeSH
- bakteriální proteiny chemie MeSH
- kanthaxanthin chemie MeSH
- krystalografie rentgenová MeSH
- proteinové domény MeSH
- sekundární struktura proteinů MeSH
- sinice chemie MeSH
- transportní proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes.IMPORTANCE Herein, we deciphered the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide important insight into lipopeptide biosynthesis in prokaryotes. Some of the variants identified exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.
- MeSH
- Anabaena genetika MeSH
- antifungální látky MeSH
- antiinfekční látky MeSH
- bakteriální geny genetika MeSH
- bakteriální proteiny genetika MeSH
- cyklické peptidy biosyntéza chemie genetika MeSH
- lipopeptidy biosyntéza chemie genetika farmakologie MeSH
- multigenová rodina MeSH
- peptidsynthasy genetika MeSH
- polyketidsynthasy genetika MeSH
- sinice genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Trap fluid of aquatic carnivorous plants of the genus Utricularia hosts specific microbiomes consisting of commensal pro- and eukaryotes of largely unknown ecology. We examined the characteristics and dynamics of bacteria and the three dominant eukaryotes, i.e. the algae-bearing ciliate Tetrahymena utriculariae (Ciliophora), a green flagellate Euglena agilis (Euglenophyta), and the alga Scenedesmus alternans (Chlorophyta), associated with the traps of Utricularia reflexa. Our study focused on ecological traits and life strategies of the highly abundant ciliate whose biomass by far exceeds that of other eukaryotes and bacteria independent of the trap age. The ciliate was the only bacterivore in the traps, driving rapid turnover of bacterial standing stock. However, given the large size of the ciliate and the cell-specific uptake rates of bacteria we estimated that bacterivory alone would likely be insufficient to support its apparent rapid growth in traps. We suggest that mixotrophy based on algal symbionts contributes significantly to the diet and survival strategy of the ciliate in the extreme (anaerobic, low pH) trap-fluid environment. We propose a revised concept of major microbial interactions in the trap fluid where ciliate bacterivory plays a central role in regeneration of nutrients bound in rapidly growing bacterial biomass.
- MeSH
- anaerobióza MeSH
- Bacteria MeSH
- biomasa MeSH
- Chlorophyta MeSH
- Ciliophora fyziologie MeSH
- ekologie * MeSH
- koncentrace vodíkových iontů MeSH
- Magnoliopsida chemie růst a vývoj mikrobiologie parazitologie MeSH
- mikrobiální společenstva MeSH
- stadia vývoje MeSH
- symbióza fyziologie MeSH
- Tetrahymena růst a vývoj fyziologie MeSH
- Publikační typ
- časopisecké články MeSH