Structural and regulatory determinants of flagellar motility in Rhodobacterales-the archetypal flagellum of Phaeobacter inhibens DSM 17395
Status In-Process Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SFB TRR-52
Deutsche Forschungsgemeinschaft
PubMed
40626787
PubMed Central
PMC12363192
DOI
10.1128/msystems.00419-25
Knihovny.cz E-zdroje
- Klíčová slova
- CtrA phosphorelay, Rhodobacterales, evolution, flagellar gene regulation, flagellar motility,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Flagellar motility is crucial for the swim-and-stick lifestyle and plays an important role in bacterial-algal interactions of Rhodobacterales. This alphaproteobacterial order contains three distinct types of flagellar gene clusters (FGCs) for the formation of a functional flagellum. Our phylogenetically broad taxon sampling of more than 300 genomes revealed that the most common FGC, the fla1-type, was probably already present in the common ancestor of Rhodobacterales and was strictly vertically inherited, while the other two FGC types, fla2 and fla3, were spread via horizontal operon transfers. Swimming of the marine model organism Phaeobacter inhibens DSM 17395 (Roseobacteraceae) is mediated by the archetypal fla1-type flagellum. Screening of 13,000 transposon mutants of P. inhibens on soft agar plates revealed that 40 genes, including four genes encoding conserved but not yet characterized proteins (CP1-4) within the FGC, are essential for motility. Exoproteome analyses indicated that CP1-4 are required at different stages of flagellar assembly. Only eight genes outside the FGC were identified as essential for swimming motility, including all three genes of the CtrA phosphorelay. Using comparative transcriptomics of ΔcckA, ΔchpT, and ΔctrA mutants of the distantly related model organisms P. inhibens and Dinoroseobacter shibae DSM 16493, we identified genes for the flagellum and cyclic di-GMP turnover as core targets of the CtrA phosphorelay and a conserved connection with quorum sensing across members of the Rhodobacterales. IMPORTANCE: The bacterial flagellum is a sophisticated nanomachine for swimming motility and rapid chemotactic response to gradients of attractants or repellents in the environment. It is structurally highly conserved and has been intensively studied in gammaproteobacterial model bacteria such as Escherichia coli and Salmonella enterica. However, the flagellar gene clusters of different alphaproteobacterial orders have distinct structures and compositions, as demonstrated by the three flagellar systems of Rhodobacterales investigated in the current study. The archetypal fla1-type flagellum originated in its common ancestor and evolved synchronously with the host. The universal presence of four as yet uncharacterized essential genes in fla1-type FGCs (CP1-4) reflects the order-specific adaptation of the flagellar system during bacterial evolution. Comparative transcriptome analyses of ΔcckA, ΔchpT, and ΔctrA mutants showed that the core function of the CtrA phosphorelay in Rhodobacterales is the transcriptional control of flagellar genes.
Genome Analytics Helmholtz Centre for Infection Research Braunschweig Lower Saxony Germany
Institute of Microbiology Technical University of Braunschweig Braunschweig Lower Saxony Germany
Zobrazit více v PubMed
Liang KYH, Orata FD, Boucher YF, Case RJ. 2021. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “roseobacter clade” into a novel family, Roseobacteraceae fam. Nov. Front Microbiol 12:683109. doi: 10.3389/fmicb.2021.683109 PubMed DOI PMC
Huang Z, Li M, Oren A, Lai Q. 2024. Genome-based analysis of the family Paracoccaceae and description of Ostreiculturibacter nitratireducens gen. nov., sp. nov., isolated from an oyster farm on a tidal flat. Front Microbiol 15:1376777. doi: 10.3389/fmicb.2024.1376777 PubMed DOI PMC
Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, Klenk H-P, Schomburg D, Petersen J, Göker M. 2017. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 11:1483–1499. doi: 10.1038/ismej.2016.198 PubMed DOI PMC
Wichard T. 2015. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front Plant Sci 6:86. doi: 10.3389/fpls.2015.00086 PubMed DOI PMC
Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, Barteneva N, Paulson JN, Chai L, Clardy J, Kolter R. 2016. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife 5:e17473. doi: 10.7554/eLife.17473 PubMed DOI PMC
Fei C, Ochsenkühn MA, Shibl AA, Isaac A, Wang C, Amin SA. 2020. Quorum sensing regulates ‘swim-or-stick’ lifestyle in the phycosphere. Environ Microbiol 22:4761–4778. doi: 10.1111/1462-2920.15228 PubMed DOI PMC
Isaac A, Mohamed AR, Amin SA. 2024. Rhodobacteraceae are key players in microbiome assembly of the diatom Asterionellopsis glacialis. Appl Environ Microbiol 90. doi: 10.1128/aem.00570-24 PubMed DOI PMC
Fei C, Booker A, Klass S, Vidyarathna NK, Ahn SH, Mohamed AR, Arshad M, Glibert PM, Heil CA, Martínez Martínez J, Amin SA. 2025. Friends and foes: symbiotic and algicidal bacterial influence on Karenia brevis blooms. ISME Commun 5:ycae164. doi: 10.1093/ismeco/ycae164 PubMed DOI PMC
Qui-Minet ZN, Wichard T, Del Olmo G, Pereira M, Holbl H, Ruiz P, Cremades J, Pintado J. 2025. Light-regulated interactions between Phaeobacter sp. and Ulva ohnoi (Chlorophyta): effects on microbiome dynamics, metabolome composition, and tropodithietic acid production. Environ Exp Bot 230:106093. doi: 10.1016/j.envexpbot.2025.106093 DOI
Wagner-Döbler I, Biebl H. 2006. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280. doi: 10.1146/annurev.micro.60.080805.142115 PubMed DOI
Buchan A, LeCleir GR, Gulvik CA, González JM. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12:686–698. doi: 10.1038/nrmicro3326 PubMed DOI
Wienhausen G, Moraru C, Bruns S, Tran DQ, Sultana S, Wilkes H, Dlugosch L, Azam F, Simon M. 2024. Ligand cross-feeding resolves bacterial vitamin B PubMed DOI
Wang H, Tomasch J, Jarek M, Wagner-Döbler I. 2014. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol 5:311. doi: 10.3389/fmicb.2014.00311 PubMed DOI PMC
Tomasch J, Ringel V, Wang H, Freese HM, Bartling P, Brinkmann H, Vollmers J, Jarek M, Wagner-Döbler I, Petersen J. 2022. Fatal affairs – conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microb Genom 8:000787. doi: 10.1099/mgen.0.000787 PubMed DOI PMC
Abada A, Beiralas R, Narvaez D, Sperfeld M, Duchin-Rapp Y, Lipsman V, Yuda L, Cohen B, Carmieli R, Ben-Dor S, Rocha J, Huang Zhang I, Babbin AR, Segev E. 2023. Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse. ISME J 17:1167–1183. doi: 10.1038/s41396-023-01427-8 PubMed DOI PMC
Miller TR, Belas R. 2006. Motility is involved in Silicibacter sp. TM1040 interaction with dinoflagellates. Environ Microbiol 8:1648–1659. doi: 10.1111/j.1462-2920.2006.01071.x PubMed DOI
Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, Petersen J. 2015. Plasmid curing and the loss of grip – The 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol 38:120–127. doi: 10.1016/j.syapm.2014.12.001 PubMed DOI
Wang H, Tomasch J, Michael V, Bhuju S, Jarek M, Petersen J, Wagner-Döbler I. 2015. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum. Front Microbiol 6:1262. doi: 10.3389/fmicb.2015.01262 PubMed DOI PMC
Michael V, Frank O, Bartling P, Scheuner C, Göker M, Brinkmann H, Petersen J. 2016. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J 10:2498–2513. doi: 10.1038/ismej.2016.30 PubMed DOI PMC
Bartling P, Vollmers J, Petersen J. 2018. The first world swimming championships of roseobacters—phylogenomic insights into an exceptional motility phenotype. Syst Appl Microbiol 41:544–554. doi: 10.1016/j.syapm.2018.08.012 PubMed DOI
Stocker R, Seymour JR. 2012. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev 76:792–812. doi: 10.1128/MMBR.00029-12 PubMed DOI PMC
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. 2024. Space, the final frontier: the spatial component of phytoplankton–bacterial interactions. Mol Microbiol 122:331–346. doi: 10.1111/mmi.15293 PubMed DOI
Lasker K, Mann TH, Shapiro L. 2016. An intracellular compass spatially coordinates cell cycle modules in Caulobacter crescentus. Curr Opin Microbiol 33:131–139. doi: 10.1016/j.mib.2016.06.007 PubMed DOI PMC
van Teeseling MCF, Thanbichler M. 2020. Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem 401:1349–1363. doi: 10.1515/hsz-2020-0235 PubMed DOI
Macnab RM. 2003. How bacteria assemble flagella. Annu Rev Microbiol 57:77–100. doi: 10.1146/annurev.micro.57.030502.090832 PubMed DOI
Chevance FFV, Hughes KT. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465. doi: 10.1038/nrmicro1887 PubMed DOI PMC
Wadhwa N, Berg HC. 2022. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol 20:161–173. doi: 10.1038/s41579-021-00626-4 PubMed DOI
Colin R, Ni B, Laganenka L, Sourjik V. 2021. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 45:fuab038. doi: 10.1093/femsre/fuab038 PubMed DOI PMC
García N, Campos A, Osorio A, Poggio S, González-Pedrajo B, Camarena L, Dreyfus G. 1998. The flagellar switch genes fliM and fliN of Rhodobacter sphaeroides are contained in a large flagellar gene cluster. J Bacteriol 180:3978–3982. doi: 10.1128/JB.180.15.3978-3982.1998 PubMed DOI PMC
Frank O, Göker M, Pradella S, Petersen J. 2015. Ocean’s Twelve: flagellar and biofilm chromids in the multipartite genome of Marinovum algicola DG898 exemplify functional compartmentalization. Environ Microbiol 17:4019–4034. doi: 10.1111/1462-2920.12947 PubMed DOI
Koppenhöfer S, Wang H, Scharfe M, Kaever V, Wagner-Döbler I, Tomasch J. 2019. Integrated transcriptional regulatory network of quorum sensing, replication control, and SOS response in Dinoroseobacter shibae. Front Microbiol 10:803. doi: 10.3389/fmicb.2019.00803 PubMed DOI PMC
Sonnenschein EC, Jimenez G, Castex M, Gram L. 2021. The Roseobacter-group bacterium Phaeobacter as a safe probiotic solution for aquaculture. Appl Environ Microbiol 87. doi: 10.1128/AEM.02581-20 PubMed DOI PMC
Drüppel K, Hensler M, Trautwein K, Koßmehl S, Wöhlbrand L, Schmidt-Hohagen K, Ulbrich M, Bergen N, Meier-Kolthoff JP, Göker M, Klenk H-P, Schomburg D, Rabus R. 2014. Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade). Environ Microbiol 16:218–238. doi: 10.1111/1462-2920.12276 PubMed DOI
Trautwein K, Hensler M, Wiegmann K, Skorubskaya E, Wöhlbrand L, Wünsch D, Hinrichs C, Feenders C, Müller C, Schell K, Ruppersberg H, Vagts J, Koßmehl S, Steinbüchel A, Schmidt-Kopplin P, Wilkes H, Hillebrand H, Blasius B, Schomburg D, Rabus R. 2018. The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks. FEMS Microbiol Ecol 94:fiy154. doi: 10.1093/femsec/fiy154 PubMed DOI PMC
Petersen J, Brinkmann H, Berger M, Brinkhoff T, Päuker O, Pradella S. 2011. Origin and evolution of a novel DnaA-like plasmid replication type in Rhodobacterales. Mol Biol Evol 28:1229–1240. doi: 10.1093/molbev/msq310 PubMed DOI
Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, Hensler M, Michael V, Ruppersberg H, Wünsch D, Feenders C, Neumann-Schaal M, Kaltenhäuser S, Ulbrich M, Schmidt-Hohagen K, Blasius B, Petersen J, Schomburg D, Rabus R. 2016. Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: energetic costs of plasmids assessed by quantitative physiological analyses. Environ Microbiol 18:4817–4829. doi: 10.1111/1462-2920.13381 PubMed DOI
Wünsch D, Strijkstra A, Wöhlbrand L, Freese HM, Scheve S, Hinrichs C, Trautwein K, Maczka M, Petersen J, Schulz S, Overmann J, Rabus R. 2020. Global response of Phaeobacter inhibens DSM 17395 to deletion of its 262-kb chromid encoding antibiotic synthesis. Microb Physiol 30:9–24. doi: 10.1159/000508591 PubMed DOI
Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, Rinta-Kanto JM, Sharma S, Sun S, Varaljay V, Vila-Costa M, Westrich JR, Moran MA. 2010. Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798. doi: 10.1038/ismej.2009.150 PubMed DOI
Belas R, Horikawa E, Aizawa S-I, Suvanasuthi R. 2009. Genetic determinants of Silicibacter sp. TM1040 motility. J Bacteriol 191:4502–4512. doi: 10.1128/JB.00429-09 PubMed DOI PMC
Sule P, Belas R. 2013. A novel inducer of Roseobacter motility is also a disruptor of algal symbiosis. J Bacteriol 195:637–646. doi: 10.1128/JB.01777-12 PubMed DOI PMC
Ramakrishnan G, Newton A. 1990. FlbD of Caulobacter crescentus is a homologue of the NtrC (NRI) protein and activates sigma 54-dependent flagellar gene promoters. Proc Natl Acad Sci USA 87:2369–2373. doi: 10.1073/pnas.87.6.2369 PubMed DOI PMC
Komoriya K, Shibano N, Higano T, Azuma N, Yamaguchi S, Aizawa S-I. 1999. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol Microbiol 34:767–779. doi: 10.1046/j.1365-2958.1999.01639.x PubMed DOI
Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52. doi: 10.1128/MMBR.00043-12 PubMed DOI PMC
Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, Petersen J, Brinkmann H, Bunk B, Bhuju S, Jarek M, Geffers R, Lang AS, Wagner-Döbler I. 2018. Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random. Genome Biol Evol 10:359–369. doi: 10.1093/gbe/evy005 PubMed DOI PMC
Craske MW, Wilson JS, Fogg PCM. 2024. Gene transfer agents: structural and functional properties of domesticated viruses. Trends Microbiol 32:1200–1211. doi: 10.1016/j.tim.2024.05.002 PubMed DOI
Wang H, Ziesche L, Frank O, Michael V, Martin M, Petersen J, Schulz S, Wagner-Döbler I, Tomasch J. 2014. The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae. BMC Genomics 15:130. doi: 10.1186/1471-2164-15-130 PubMed DOI PMC
Wu J, Ohta N, Zhao J-L, Newton A. 1999. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci USA 96:13068–13073. doi: 10.1073/pnas.96.23.13068 PubMed DOI PMC
Mercer RG, Lang AS. 2014. Identification of a predicted partner-switching system that affects production of the gene transfer agent RcGTA and stationary phase viability in Rhodobacter capsulatus. BMC Microbiol 14:71. doi: 10.1186/1471-2180-14-71 PubMed DOI PMC
Fogg PCM. 2019. Identification and characterization of a direct activator of a gene transfer agent. Nat Commun 10:595. doi: 10.1038/s41467-019-08526-1 PubMed DOI PMC
Laass S, Kleist S, Bill N, Drüppel K, Kossmehl S, Wöhlbrand L, Rabus R, Klein J, Rohde M, Bartsch A, Wittmann C, Schmidt-Hohagen K, Tielen P, Jahn D, Schomburg D. 2014. Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12 PubMed DOI PMC
Poggio S, Abreu-Goodger C, Fabela S, Osorio A, Dreyfus G, Vinuesa P, Camarena L. 2007. A complete set of flagellar genes acquired by horizontal transfer coexists with the endogenous flagellar system in Rhodobacter sphaeroides. J Bacteriol 189:3208–3216. doi: 10.1128/JB.01681-06 PubMed DOI PMC
Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S. 2012. Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ Microbiol 14:2661–2672. doi: 10.1111/j.1462-2920.2012.02806.x PubMed DOI
Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J. 2018. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J 12:1994–2010. doi: 10.1038/s41396-018-0150-9 PubMed DOI PMC
Liu Y, Zheng Q, Lin W, Jiao N. 2019. Characteristics and evolutionary analysis of photosynthetic gene clusters on extrachromosomal replicons: from streamlined plasmids to chromids. mSystems 4:e00358-19. doi: 10.1128/mSystems.00358-19 PubMed DOI PMC
Petersen J, Vollmers J, Ringel V, Brinkmann H, Ellebrandt-Sperling C, Spröer C, Howat AM, Murrell JC, Kaster A-K. 2019. A marine plasmid hitchhiking vast phylogenetic and geographic distances. Proc Natl Acad Sci USA 116:20568–20573. doi: 10.1073/pnas.1905878116 PubMed DOI PMC
Birmes L, Freese HM, Petersen J. 2021. RepC_soli: a novel promiscuous plasmid type of Rhodobacteraceae mediates horizontal transfer of antibiotic resistances in the ocean. Environ Microbiol 23:5395–5411. doi: 10.1111/1462-2920.15380 PubMed DOI
Norris V, Madsen MS. 1995. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J Mol Biol 253:739–748. doi: 10.1006/jmbi.1995.0587 PubMed DOI
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, Erhardt M. 2024. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. Nat Commun 15:5921. doi: 10.1038/s41467-024-50278-0 PubMed DOI PMC
Beyersmann PG, Tomasch J, Son K, Stocker R, Göker M, Wagner-Döbler I, Simon M, Brinkhoff T. 2017. Dual function of tropodithietic acid as antibiotic and signaling molecule in global gene regulation of the probiotic bacterium Phaeobacter inhibens. Sci Rep 7:730. doi: 10.1038/s41598-017-00784-7 PubMed DOI PMC
Patzelt D, Wang H, Buchholz I, Rohde M, Gröbe L, Pradella S, Neumann A, Schulz S, Heyber S, Münch K, Münch R, Jahn D, Wagner-Döbler I, Tomasch J. 2013. You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J 7:2274–2286. doi: 10.1038/ismej.2013.107 PubMed DOI PMC
Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT, Lang AS. 2014. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics 15:730. doi: 10.1186/1471-2164-15-730 PubMed DOI PMC
Koppenhöfer S, Lang AS. 2020. Interactions among redox regulators and the CtrA phosphorelay in Dinoroseobacter shibae and Rhodobacter capsulatus. Microorganisms 8:562. doi: 10.3390/microorganisms8040562 PubMed DOI PMC
Greene SE, Brilli M, Biondi EG, Komeili A. 2012. Analysis of the CtrA pathway in Magnetospirillum reveals an ancestral role in motility in alphaproteobacteria. J Bacteriol 194:2973–2986. doi: 10.1128/JB.00170-12 PubMed DOI PMC
Tomasch J, Koppenhöfer S, Lang AS. 2021. Connection between chromosomal location and function of CtrA phosphorelay genes in alphaproteobacteria. Front Microbiol 12:662907. doi: 10.3389/fmicb.2021.662907 PubMed DOI PMC
Vega-Baray B, Domenzain C, Rivera A, Alfaro-López R, Gómez-César E, Poggio S, Dreyfus G, Camarena L. 2015. The flagellar set fla2 in Rhodobacter sphaeroides is controlled by the CckA pathway and is repressed by organic acids and the expression of fla1. J Bacteriol 197:833–847. doi: 10.1128/JB.02429-14 PubMed DOI PMC
Hernández-Valle J, Sanchez-Flores A, Poggio S, Dreyfus G, Camarena L. 2020. The CtrA regulon of Rhodobacter sphaeroides favors adaptation to a particular lifestyle. J Bacteriol 202:10. doi: 10.1128/JB.00678-19 PubMed DOI PMC
Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. 2011. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12:124. doi: 10.1186/1471-2105-12-124 PubMed DOI PMC
Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. doi: 10.1186/1471-2105-5-113 PubMed DOI PMC
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334 PubMed DOI
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. doi: 10.1093/molbev/msx281 PubMed DOI PMC
Xu S, Li L, Luo X, Chen M, Tang W, Zhan L, Dai Z, Lam TT, Guan Y, Yu G. 2022. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. Imeta 1:e56. doi: 10.1002/imt2.56 PubMed DOI PMC
Petersen J, Brinkmann H, Pradella S. 2009. Diversity and evolution of repABC type plasmids in Rhodobacterales. Environ Microbiol 11:2627–2638. doi: 10.1111/j.1462-2920.2009.01987.x PubMed DOI
Koßmehl S, Wöhlbrand L, Drüppel K, Feenders C, Blasius B, Rabus R. 2013. Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395. Proteomics 13:2743–2760. doi: 10.1002/pmic.201300112 PubMed DOI
Wöhlbrand L, Ruppersberg HS, Feenders C, Blasius B, Braun H-P, Rabus R. 2016. Analysis of membrane–protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. Proteomics 16:973–988. doi: 10.1002/pmic.201500360 PubMed DOI
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. doi: 10.1093/bioinformatics/btt656 PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616 PubMed DOI PMC
Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, John NS, Prakash A, Walzer M, Wang S, Vizcaíno JA. 2025. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res 53:D543–D553. doi: 10.1093/nar/gkae1011 PubMed DOI PMC