Porphene and porphite as porphyrin analogs of graphene and graphite

. 2023 Oct 09 ; 14 (1) : 6308. [epub] 20231009

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37813887
Odkazy

PubMed 37813887
PubMed Central PMC10562370
DOI 10.1038/s41467-023-41461-w
PII: 10.1038/s41467-023-41461-w
Knihovny.cz E-zdroje

Two-dimensional materials have unusual properties and promise applications in nanoelectronics, spintronics, photonics, (electro)catalysis, separations, and elsewhere. Most are inorganic and their properties are difficult to tune. Here we report the preparation of Zn porphene, a member of the previously only hypothetical organic metalloporphene family. Similar to graphene, these also are fully conjugated two-dimensional polymers, but are composed of fused metalloporphyrin rings. Zn porphene is synthesized on water surface by two-dimensional oxidative polymerization of a Langmuir layer of Zn porphyrin with K2IrCl6, reminiscent of known one-dimensional polymerization of pyrroles. It is transferable to other substrates and bridges μm-sized pits. Contrary to previous theoretical predictions of metallic conductivity, it is a p-type semiconductor due to a predicted Peierls distortion of its unit cell from square to rectangular, analogous to the appearance of bond-length alternation in antiaromatic molecules. The observed reversible insertion of various metal ions, possibly carrying a fifth or sixth ligand, promises tunability and even patterning of circuits on an atomic canvas without removing any π centers from conjugation.

Zobrazit více v PubMed

Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 2018;118:6189–6235. PubMed

Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L. Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 2010;133:1203–1205. PubMed

Colson JW, Dichtel WR. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013;5:453–465. PubMed

Payamyar P, King BT, Öttinger HC, Schlüter AD. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 2016;52:18–34. PubMed

Cai Z, Liu B, Zou X, Cheng HM. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018;118:6091–6133. PubMed

Zeng M, Xiao Y, Liu J, Yang K, Fu L. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev. 2018;118:6236–6296. PubMed

Jin H, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018;118:6337–6408. PubMed

Wang W, et al. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord. Chem. Rev. 2021;429:213616.

Hu Y, et al. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth. 2022;1:449–454.

Avouris, P., Heinz, T. F. & Low, T. (eds). 2D Materials: Properties and Devices (Cambridge Univ. Press, 2017).

Ares P, Novoselov KS. Recent advances in graphene and other 2D materials. Nano Mater. Sci. 2022;4:3–9.

Schlüter AD. Progress in synthetic 2D polymers obtained at the air/water interface. Chimia. 2019;73:487–492. PubMed

Liu K, Wang L, Dong R. Two-dimensional conjugated polymer films via liquid-interface-assisted synthesis toward organic electronic devices. J. Mater. Chem. C. 2020;8:10696–10718.

Yamaguchi Y. Theoretical study of two-dimensionally fused zinc porphyrins: DFT calculations. Int. J. Quantum Chem. 2009;109:1584–1597.

Yamaguchi Y. Transport properties of two-dimensionally fused zinc porphyrins from linear-response approach. Int. J. Quantum Chem. 2011;111:3230–3238.

Tan J, Li W, He X, Zhao M. Stable ferromagnetism and half-metallicity in two-dimensional polyporphyrin frameworks. RSC Adv. 2013;3:7016–7022.

Charkin OP, Klimenko NM. Theoretical study of 1D and 2D fused magnesium porphine oligomers. Russ. J. Inorg. Chem. 2013;58:1058–1069.

Singh HK, Kumar P, Waghmare UV. Theoretical prediction of a stable 2D crystal of vanadium porphyrin: a half-metallic ferromagnet. J. Phys. Chem. C. 2015;119:25657–25662.

Tromer RM, Felix IM, Freitas A, Azevedo S, Pereira LFC. Diboron-porphyrin monolayer: a new 2D semiconductor. Comp. Mater. Sci. 2020;172:109338.

Yamaguchi Y. Theoretical prediction of electronic structures of fully π-conjugated zincoligoporphyrins with curved surface structures. J. Chem. Phys. 2004;120:7963–7970. PubMed

Posligua V, et al. Band structures of periodic porphyrin nanostructures. J. Phys. Chem. C. 2018;122:23790–23798.

Liu JH, Yang LM, Ganz E. Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets. J. Mat. Chem. A. 2019;7:11944–11952.

Nakamura Y, et al. A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. J. Am. Chem. Soc. 2006;128:4119–4127. PubMed

Rascon EC, et al. On-surface synthesis of square-type porphyrin tetramers with central antiaromatic cyclooctatetraene moiety. J. Am. Chem. Soc. 2023;145:967–977. PubMed

Arnold, B. R. & Michl, J. in Kinetics and Spectroscopy of Carbenes and Biradicals (ed. Platz, M. S.) 1–35 (Plenum, 1990).

Wen J, et al. Magnetic circular dichroism of an unaromatic planar [8] annulene. J. Phys. Org. Chem. 2018;31:e3854.

Yuan Q, Nunner T, Kopp T. Imperfect nesting and Peierls instability for a two-dimensional tight-binding model. Eur. Phys. J. B. 2001;22:37–42.

Hamano T, Ono Y. Two-dimensional Peierls transition with multimode lattice distortions. Phys. E. 2004;22:156–159.

Lee S-H, et al. Band gap opening by two-dimensional manifistation of Peierls instability in graphene. ACS Nano. 2011;4:2964–2969. PubMed

Minot C. Graphite as an aromatic system. J. Phys. Chem. 1987;91:6380–6385.

Lefevre D, et al. Chemical reactivity in organized medium: building up a two-dimensional polymer. Langmuir. 1993;9:150–161.

Palacin, S., Porteu, F. & Ruaudel-Teixier, A. in Organic Thin Films and Surfaces: Directions for the Nineties Thin Films (ed. Ulman, A.) 69–82 (Academic Press, 1995).

Magnera, T. F., Pecka, J. & Michl, J. in Nanostructural Materials: Clusters, Composites, and Thin Films (eds. Moskovits, M. & Shalaev, V.) 213–220 (ACS Symposium Series 679, American Chemical Society, 1997).

Magnera, T. F., Pecka, J. & Michl, J. in Science and Technology of Polymers & Advanced Materials (eds. Prasad, P. N., Mark, J. E., Kandil, S. H. & Kafafi, Z. H.) 385–391 (Plenum, 1998).

Magnera, T. F. & Michl, J. Towards a more regular square grid polymer. Atualidades de Físico-Química Orgânica 50–55 (1998).

Magnera TF, Michl J. Two-dimensional supramolecular chemistry with molecular Tinkertoys. Proc. Natl Acad. Sci. USA. 2002;99:4788–4792. PubMed PMC

Ai M, et al. Carbon nanomembranes (CNMs) supported by polymer: mechanics and gas permeation. Adv. Mater. 2014;26:3421–3426. PubMed

Murray DJ, et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 2015;137:3450–3453. PubMed

Müller V, et al. Two-dimensional polymer synthesized at the air/water interface. Angew. Chem. Int. Ed. 2018;57:10584–10588. PubMed

Sahabudeen H, et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016;7:1–8. PubMed PMC

Park SW, et al. Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 2020;59:8218–8224. PubMed PMC

Sahabudeen H, et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. 2020;59:6028–6036. PubMed PMC

Zhang Z, et al. Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion. Nat. Comm. 2022;13:1–9. PubMed PMC

Tsuda A, Furuta H, Osuka A. Synthesis, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. J. Am. Chem. Soc. 2001;123:10304–10321. PubMed

Tsuda A, Osuka A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science. 2001;293:79–82. PubMed

Cho HS, et al. Photophysical properties of porphyrin tapes. J. Am. Chem. Soc. 2002;124:14642–14654. PubMed

Vorotyntsev MA, Konev DV, Devillers CH, Bezverkhyy I, Heintz O. Magnesium (II) polyporphine: the first electron-conducting polymer with directly linked unsubstituted porphyrin units obtained by electrooxidation at a very low potential. Electrochim. Acta. 2010;55:6703–6714.

Vorotyntsev MA, Konev DV, Devillers CH, Bezverkhyy I, Heintz O. Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine. Electrochim. Acta. 2011;56:3436–3442.

Mondal, S. et al. Making graphene-type material via polymerization of porphyrin. 10.26434/chemrxiv.13041785.v1 (2020).

Yoshida, N., Aratani, N. & Osuka, A. Ploy(zinc(II)-5,15-porphyrinylene) from silver(I)-promoted oxidation of zinc(II)-5,15-diarylporphyrins. Chem. Commun.3, 197–198 (2000).

Kovacic P, Jones MB. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene) Chem. Rev. 1987;87:357–379.

Kovacic P. Novel pathway for homopolymerization by nuclear coupling via aromatic radical cation initiation. J. Polym. Sci. Polym. Lett. Ed. 1981;19:359–362.

Clausen C, et al. Investigation of tightly coupled porphyrin arrays comprised of identical monomers for multibit information storage. J. Org. Chem. 2000;65:7371–7378. PubMed

Brennan BJ, et al. Oxidative coupling of porphyrins using copper(II) salts. Chem. Commun. 2011;47:10034–10036. PubMed

Bengasi G, et al. Molecular flattening effect to enhance the conductivity of fused porphyrin tape thin films. Angew. Chem. 2019;58:2103–2108. PubMed PMC

Bull RA, Bulkowski JE. Tetraphenylporphyrin monolayers: formation at the air-water interface and characterization on glass supports by adsorption and fluorescence spectroscopy. J. Colloid Sci. 1983;92:1–12.

Kaleta J, et al. Structure of a monolayer of molecular rotors on aqueous subphase from grazing-incidence x-ray diffraction. Proc. Natl Acad. Sci. USA. 2018;115:9373–9378. PubMed PMC

Uysal A, Rock W, Quiao B, Bu W, Lin B. Two-step adsorption of PtCl62- at a charged Langmuir monolayer: role of hydration and ion correlations. J. Phys. Chem. C. 2017;121:25377–25383.

Kmetko J, Datta A, Evmenenko G, Dutta P. The effects of divalent ions on Langmuir monolayer and subphase structure: a grazing-incidence diffraction and Bragg Rod study. J. Phys. Chem. B. 2011;105:10818–10825.

Bao JL, Gagliardi L, Truhlar DG. Self-interaction error in density functional theory: an appraisal. J. Phys. Chem. Lett. 2018;9:2353–2358. PubMed

Li XY, Zgierski MZ. Porphine force field: in-plane normal modes of free-base porphine; comparison with metalloporphines and structural implications. J. Phys. Chem. 1991;95:4268–4287.

Jarzęcki AA, Kozlowski PM, Pulay P, Ye BH, Li XY. Scaled quantum mechanical and experimental vibrational spectra of magnesium and zinc porphyrins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997;53:1195–1209.

Jorio A, et al. Raman study of ion-induced defects in N-layer graphene. J. Phys. Condens. Matter. 2010;22:334204. PubMed

Yang L, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014;14:6275–6280. PubMed

Hötger D, et al. On-surface transmetalation of metalloporphyrins. Nanoscale. 2018;10:21116–21122. PubMed

Ghosh A, Almlöf J, Gassman PG. Ab initio SCF studies of basis set effects in free base porphin. Chem. Phys. Lett. 1991;186:113–118.

Polzonetti G, et al. Platinum complex/Zn-porphyrin macrosystem assemblies: electronic structure and conformational investigation by x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 1999;17:832–839.

Aratani N, Tsunda A, Osuka A. Discrete giant porphyrin arrays: challenges to molecular size, length and the extent of electronic pi-conjugation. Synlett. 2001;11:1663–1674.

Kadish, K., Smith, K. M. & Guilard, R. (eds). The Porphyrin Handbook, Vol. 3, Inorganic, Organometallic and Coordination Chemistry (Academic Press, 2000).

Michl, J. in Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials (eds. J. Harrod, F. & Laine, R. M.) 243–267 (Kluwer, 1995).

Harrison, R. M., Magnera, T. F., Vacek, J., & Michl, J. in Modular Chemistry (ed. Michl, J.) 1–16 (Kluwer, 1997).

Trova MP, et al. Superoxide dismutase mimetics. Part 2: synthesis and structure–activity relationship of glyoxylate- and glyoxamide-derived metalloporphyrins. Bioorg. Med. Chem. 2003;11:2695–2707. PubMed

Neya S, Quan J, Hata M, Hoshino T, Funasaki N. A Novel and efficient synthesis of porphine. Tetrahedron Lett. 2006;47:8731–8732.

Solovyov KN, et al. Resonance Raman spectra of deuterated metalloporphins. J. Mol. Struct. 1978;45:267–305.

Lin B, et al. The liquid surface/interface spectrometer at ChemMatCARS synctrotron facility at the Advanced Photon Source. Phys. B. 2003;336:75–80.

Metcalfe A, Shankar SU. Adsorption of water vapour on evaporated germanium films. J. Chem. Soc., Faraday Trans. 1. 1979;75:962–969.

Higashiyama T, Takenaka T. Infrared attenuated total reflection spectra of adsorbed layers at the interface between a germanium electrode and an aqueous solution of sodium laurate. J. Phys. Chem. 1974;78:941–947.

Tourgaard S, Jansson C. Comparison of validity and consistency of methods for quantitative XPS peak analysis. Surf. Inter. Anal. 1993;20:1013–1046.

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169. PubMed

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. 1999;59:1758.

Bernard YA, Shao Y, Krylov AI. General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks. J. Chem. Phys. 2012;136:204103. PubMed

Shao Y, Mei Y, Sundholm D, Kaila VR. Benchmarking the performance of time-dependent density functional theory methods on biochromophores. J. Chem. Theory Comp. 2019;16:587–600. PubMed PMC

Yamaguchi Y. Theoretical study of two dimensionally fused zinc porphyrins: DFT calculations. Int. J. Quant. Chem. 2009;109:1584–1597.

Yamaguchi Y. Transport properties of two dimensionally fused zinc porphyrins from linear response approach. Int. J. Quant. Chem. 2011;111:3230–3238.

Togo A, Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015;108:1–5.

Skelton JM, Burton LA, Jackson AJ, Oba F, Parker SC. & Walsh. A lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport. Phys. Chem. Chem. Phys. 2017;19:12452. PubMed PMC

Blum V, et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Comm. 2009;180:2175–2196.

Diller K, et al. Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver. J. Chem. Phys. 2014;141:144703. PubMed

Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. PubMed

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011;32:1456–1465. PubMed

Dovesi R, et al. Quantum mechanical condensed matter simulations with CRYSTAL WIREs. Comput. Mol. Sci. 2018;8:e1360–e1396.

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999;110:6158–6170.

Bredow T, Peintinger MF, Oliveira DV. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2013;34:451–459. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene

. 2024 Feb 14 ; 146 (6) : 3992-4000. [epub] 20240131

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...