• This record comes from PubMed

Human Wharton's Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials

. 2020 Apr 12 ; 9 (4) : . [epub] 20200412

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
0070/DW/2018/02 Ministerstwo Nauki i Szkolnictwa Wyższego

Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton's jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton's jelly, is a promising source of mesenchymal stem cells.

See more in PubMed

Doğan A. Embryonic stem cells in development and regenerative medicine. Adv. Exp. Med. Biol. 2018;1079:1–15. PubMed

Huang G., Ye S., Zhou X., Liu D., Ying Q.L. Molecular basis of embryonic stem cell self-renewal: From signaling pathways to pluripotency network. Cell. Mol. Life Sci. 2015;72:1741–1757. doi: 10.1007/s00018-015-1833-2. PubMed DOI PMC

Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. the Development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen sells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x. PubMed DOI

Gruber H.E., Deepe R., Hoelscher G.L., Ingram J.A., Norton H.J., Scannell B., Loeffler B.J., Zinchenko N., Hanley E.N., Tapp H. Human adipose-derived mesenchymal stem cells: Direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng. Part A. 2010;16:2843–2860. doi: 10.1089/ten.tea.2009.0709. PubMed DOI

Piva E., Tarlé S.A., Nör J.E., Zou D., Hatfield E., Guinn T., Eubanks E.J., Kaigler D. Dental pulp tissue regeneration using dental pulp stem cells isolated and expanded in human serum. J. Endod. 2017;43:568–574. doi: 10.1016/j.joen.2016.11.018. PubMed DOI PMC

Azizian S., Khatami F., Modaresifar K., Mosaffa N., Peirovi H., Tayebi L., Bahrami S., Redl H., Niknejad H. Immunological compatibility status of placenta-derived stem cells is mediated by scaffold 3D structure. Artif. Cells Nanomed. Biotechnol. 2018;46:876–884. doi: 10.1080/21691401.2018.1438452. PubMed DOI

Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. Med. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI

Kranc W., Brązert M., Budna J., Celichowski P., Bryja A., Nawrocki M.J., Ożegowska K., Jankowski M., Chermuła B., Dyszkiewicz-Konwińska M., et al. Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem. Cell Biol. 2019;151:125–143. doi: 10.1007/s00418-018-1750-1. PubMed DOI PMC

Dyszkiewicz-Konwińska M., Bryja A., Jopek K., Budna J., Khozmi R., Jeseta M., Bukowska D., Antosik P., Bruska M., Nowicki M., et al. Expression of genes responsible for cell morphogenesis involved in differentiation in porcine buccal pouch mucosal cells during long-term primary culture and real-time proliferation in vitro. J. Biol. Regul. Homeost. Agents. 2017;31:855–864. PubMed

Mohamadi Y., Noori Moghahi S.M.H., Mousavi M., Borhani-Haghighi M., Abolhassani F., Kashani I.R., Hassanzadeh G. Intrathecal transplantation of Wharton’s jelly mesenchymal stem cells suppresses the NLRP1 inflammasome in the rat model of spinal cord injury. J. Chem. Neuroanat. 2019;97:1–8. doi: 10.1016/j.jchemneu.2019.01.011. PubMed DOI

Baksh D., Yao R., Tuan R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25:1384–1392. doi: 10.1634/stemcells.2006-0709. PubMed DOI

Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Brix J., Zhou Y., Luo Y. The epigenetic reprogramming roadmap in generation of iPSCs from somatic cells. J. Genet. Genom. 2015;42:661–670. doi: 10.1016/j.jgg.2015.10.001. PubMed DOI

Noguchi H., Miyagi-Shiohira C., Nakashima Y. Induced tissue-specific stem cells and epigenetic memory in induced pluripotent stem cells. Int. J. Mol. Sci. 2018;19:930. doi: 10.3390/ijms19040930. PubMed DOI PMC

Bar-Nur O., Russ H.A., Efrat S., Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011;9:17–23. doi: 10.1016/j.stem.2011.06.007. PubMed DOI

Subramanian A., Fong C.Y., Biswas A., Bongso A. Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS ONE. 2015;10:e0127992. doi: 10.1371/journal.pone.0127992. PubMed DOI PMC

Arutyunyan I., Elchaninov A., Makarov A., Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. PubMed DOI PMC

Conconi M.T., Di Liddo R., Tommasini M., Calore C., Parnigotto P.P. Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: An overview. Open Tissue Eng. Regen. Med. J. 2011;4:6–20. doi: 10.2174/1875043501104010006. DOI

Di Naro E., Ghezzi F., Raio L., Franchi M., D’Addario V. Umbilical cord morphology and pregnancy outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001;96:150–157. doi: 10.1016/S0301-2115(00)00470-X. PubMed DOI

Spurway J., Logan P., Pak S. The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australas. J. Ultrasound Med. 2012;15:97–102. doi: 10.1002/j.2205-0140.2012.tb00013.x. PubMed DOI PMC

Covas D.T., Siufi J.L.C., Silva A.R.L., Orellana M.D. Isolation and culture of umbilical vein mesenchymal stem cells. Braz. J. Med. Biol. Res. 2003;36:1179–1183. doi: 10.1590/S0100-879X2003000900006. PubMed DOI

Panepucci R.A., Siufi J.L.C., Silva W.A., Proto-Siquiera R., Neder L., Orellana M., Rocha V., Covas D.T., Zago M.A. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22:1263–1278. doi: 10.1634/stemcells.2004-0024. PubMed DOI

Raio L., Ghezzi F., Di Naro E., Franchi M., Briihwiler H. Prenatal assessment of the Hyrtl anastomosis and evaluation of its function. Hum. Reprod. 1999;14:1890–1893. doi: 10.1093/humrep/14.7.1890. PubMed DOI

Lyons F.G., Mattei T.A. Sources, identification, and clinical implications of heterogeneity in human umbilical cord stem cells. Adv. Exp. Med. Biol. 2019;1169:243–256. PubMed

Nanaev A.K., Kohnen G., Milovanov A.P., Domogatsky S.P., Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta. 1997;18:53–64. doi: 10.1016/S0143-4004(97)90071-0. PubMed DOI

Can A., Karahuseyinoglu S. Concise review: Human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells. 2007;25:2886–2895. doi: 10.1634/stemcells.2007-0417. PubMed DOI

Parry E.W. Some electron microscope observations on the mesenchymal structures of full-term umbilical cord. J. Anat. 1970;107:505–518. PubMed PMC

Davies J.E., Walker J.T., Keating A. Concise review: Wharton’s jelly: The rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl. Med. 2017;6:1620–1630. doi: 10.1002/sctm.16-0492. PubMed DOI PMC

Lim I.J., Phan T.T. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane. Cell Transplant. 2014;23:497–503. doi: 10.3727/096368914X678346. PubMed DOI

Ruetze M., Gallinat S., Lim I.J., Chow E., Phan T.T., Staeb F., Wenck H., Deppert W., Knott A. Common features of umbilical cord epithelial cells and epidermal keratinocytes. J. Dermatol. Sci. 2008;50:227–231. doi: 10.1016/j.jdermsci.2007.12.006. PubMed DOI

Mizoguchi M., Ikeda S., Suga Y., Ogawa H. Expression of cytokeratins and cornified cell envelope-associated proteins in umbilical cord epithelium: A comparative study of the umbilical cord, amniotic epithelia, and fetal skin. J. Invest. Dermatol. 2000;115:133–134. doi: 10.1046/j.1523-1747.2000.00031-4.x. PubMed DOI

Mizoguchi M., Suga Y., Sanmano B., Ikeda S., Ogawa H. Organotypic culture and surface plantation using umbilical cord epithelial cells: Morphogenesis and expression of differentiation markers mimicking cutaneous epidermis. J. Dermatol. Sci. 2004;35:199–206. doi: 10.1016/j.jdermsci.2004.06.003. PubMed DOI

Gonzalez R., Griparic L., Umana M., Burgee K., Vargas V., Nasrallah R., Silva F., Patel A. An efficient approach to isolation and characterization of pre- and postnatal umbilical cord lining stem cells for clinical applications. Cell Transplant. 2010;19:1439–1449. doi: 10.3727/096368910X514260. PubMed DOI

McElreavey K.D., Irvine A.I., Ennis K.T., McLean W.H.I. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Proc. Biochem. Soc. Trans. 1991;19:29S. doi: 10.1042/bst019029s. PubMed DOI

Takechi K., Kuwabara Y., Mizuno M. Ultrastructural and immunohistochemical studies of Wharton’s jelly umbilical cord cells. Placenta. 1993;14:235–245. doi: 10.1016/S0143-4004(05)80264-4. PubMed DOI

Kouloumenta A., Mavroidis M., Capetanaki Y. Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J. Biol. Chem. 2007;282:35211–35221. doi: 10.1074/jbc.M704733200. PubMed DOI

Lazarides E. Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins. Annu. Rev. Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. PubMed DOI

Gabbiani G., Ryan G.B., Majno G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971;27:549–550. doi: 10.1007/BF02147594. PubMed DOI

Kobayashi K., Kubota T., Aso T. Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly. Expression and localization of α-smooth muscle actin. Early Hum. Dev. 1998;51:223–233. doi: 10.1016/S0378-3782(97)00123-0. PubMed DOI

Deasy B.M., Schugar R.C., Chirieleison S.M., Wescoe K.E., Schmidt B.T., Askew Y., Nance J.J., Evron J.M., Peault B. High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J. Biomed. Biotechnol. 2009;2009:789526. PubMed PMC

Meyer F.A., Laver-Rudich Z., Tanenbaum R. Evidence for a mechanical coupling of glycoprotein microfibrils with collagen fibrils in Wharton’s jelly. BBA-Gen. Subj. 1983;755:376–387. doi: 10.1016/0304-4165(83)90241-6. PubMed DOI

Sobolewski K., Bańkowski E., Chyczewski L., Jaworski S. Collagen and glycosaminoglycans of wharton’s jelly. Neonatology. 1997;71:11–21. doi: 10.1159/000244392. PubMed DOI

Ryynanen J., Tan E.M.L., Hoffren J., Woodley D.T., Sollberg S. Type VII collagen gene expression in human umbilical tissue and cells. Lab. Investig. 1993;69:300–304. PubMed

Franc S., Rousseau J.C., Garrone R., Van Der Rest M., Moradi-Améli M. Microfibrillar composition of umbilical cord matrix: Characterization of fibrillin, collagen VI and intact collagen V. Placenta. 1998;19:95–104. doi: 10.1016/S0143-4004(98)90104-7. PubMed DOI

Damsgaard T.M.E., Nielsen B.W., Sørensen F.B., Henriques U., Schiøtz P.O. Estimation of the total number of mast cells in the human umbilical cord: A methodological study. Apmis. 1992;100:845–850. doi: 10.1111/j.1699-0463.1992.tb04009.x. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytom. Part A. 2018;93:19–31. doi: 10.1002/cyto.a.23242. PubMed DOI

Romanov Y.A. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21:105–110. doi: 10.1634/stemcells.21-1-105. PubMed DOI

Kadivar M., Khatami S., Mortazavi Y., Shokrgozar M.A., Taghikhani M., Soleimani M. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2006;340:639–647. doi: 10.1016/j.bbrc.2005.12.047. PubMed DOI

Reza H.M., Ng B.Y., Phan T.T., Tan D.T.H., Beuerman R.W., Ang L.P.K. Characterization of a novel umbilical cord lining cell with CD227 positivity and unique pattern of P63 expression and function. Stem Cell Rev. Rep. 2011;7:624–638. doi: 10.1007/s12015-010-9214-6. PubMed DOI

Campard D., Lysy P.A., Najimi M., Sokal E.M. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology. 2008;134:833–848. doi: 10.1053/j.gastro.2007.12.024. PubMed DOI

Weiss M.L., Anderson C., Medicetty S., Seshareddy K.B., Weiss R.J., VanderWerff I., Troyer D., McIntosh K.R. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26:2865–2874. doi: 10.1634/stemcells.2007-1028. PubMed DOI

Martin-Rendon E., Sweeney D., Lu F., Girdlestone J., Navarrete C., Watt S.M. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008;95:137–148. doi: 10.1111/j.1423-0410.2008.01076.x. PubMed DOI

Sarugaser R., Lickorish D., Baksh D., Hosseini M.M., Davies J.E. Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells. 2005;23:220–229. doi: 10.1634/stemcells.2004-0166. PubMed DOI

Sarugaser R., Hanoun L., Keating A., Stanford W.L., Davies J.E. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE. 2009;4:e6498. doi: 10.1371/journal.pone.0006498. PubMed DOI PMC

Vangsness C.T., Sternberg H., Harris L. Umbilical cord tissue offers the greatest number of harvestable mesenchymal stem cells for research and clinical application: A literature review of different harvest sites. Arthrosc.-J. Arthrosc. Relat. Surg. 2015;31:1836–1843. doi: 10.1016/j.arthro.2015.03.014. PubMed DOI

Carlin R., Davis D., Weiss M., Schultz B., Troyer D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol. 2006;4:8. doi: 10.1186/1477-7827-4-8. PubMed DOI PMC

Tong C.K., Vellasamy S., Chong Tan B., Abdullah M., Vidyadaran S., Fong Seow H., Ramasamy R. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol. Int. 2011;35:221–226. doi: 10.1042/CBI20100326. PubMed DOI

Oktar P.A., Yildirim S., Balci D., Can A. Continual expression throughout the cell cycle and downregulation upon adipogenic differentiation makes cucleostemin a vital human MSC proliferation marker. Stem Cell Rev. Rep. 2011;7:413–424. doi: 10.1007/s12015-010-9201-y. PubMed DOI

Fong C.Y., Richards M., Manasi N., Biswas A., Bongso A. Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod. Biomed. Online. 2007;15:708–718. doi: 10.1016/S1472-6483(10)60539-1. PubMed DOI

Wang H.-S., Hung S.-C., Peng S.-T., Huang C.-C., Wei H.-M., Guo Y.-J., Fu Y.-S., Lai M.-C., Chen C.-C. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22:1330–1337. doi: 10.1634/stemcells.2004-0013. PubMed DOI

Zhang Y.N., Lie P.C., Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy. 2009;11:548–558. doi: 10.1080/14653240903051533. PubMed DOI

Xu M., Zhang B., Liu Y., Zhang J., Sheng H., Shi R., Liao L., Liu N., Hu J., Wang J., et al. The immunologic and hematopoietic profiles of Mesenchymal stem cells derived from different sections of human umbilical cord. Acta Biochim. Biophys. Sin. 2014;46:1056–1065. doi: 10.1093/abbs/gmu100. PubMed DOI

Ranjbaran H., Abediankenari S., Mohammadi M., Jafari N., Khalilian A., Rahmani Z., Amiri M.M., Ebrahimi P. Wharton’s jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Med. Iran. 2018;56:28–33. PubMed

Bharti D., Shivakumar S.B., Park J.K., Ullah I., Subbarao R.B., Park J.S., Lee S.L., Park B.W., Rho G.J. Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res. 2018;372:51–65. doi: 10.1007/s00441-017-2699-4. PubMed DOI PMC

Karahuseyinoglu S., Cinar O., Kilic E., Kara F., Akay G.G., Demiralp D.Ö., Tukun A., Uckan D., Can A. Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells. 2007;25:319–331. doi: 10.1634/stemcells.2006-0286. PubMed DOI

Conconi M.T., Burra P., Di Liddo R., Calore C., Turetta M., Bellini S., Bo P., Nussdorfer G.G., Parnigotto P.P. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int. J. Mol. Med. 2006;18:1089–1096. doi: 10.3892/ijmm.18.6.1089. PubMed DOI

Mitchell K.E., Weiss M.L., Mitchell B.M., Martin P., Davis D., Morales L., Helwig B., Beerenstrauch M., Abou-Easa K., Hildreth T., et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells. 2003;21:50–60. doi: 10.1634/stemcells.21-1-50. PubMed DOI

Fu Y.S., Shih Y.T., Cheng Y.C., Min M.Y. Transformation of human umbilical mesenchymal cells into neurons in vitro. J. Biomed. Sci. 2004;11:652–660. doi: 10.1007/BF02256131. PubMed DOI

Liang J., Wu S., Zhao H., Li S.L., Liu Z.X., Wu J., Zhou L. Human umbilical cord mesenchymal stem cells derived from Wharton’s jelly differentiate into cholinergic-like neurons in vitro. Neurosci. Lett. 2013;532:59–63. doi: 10.1016/j.neulet.2012.11.014. PubMed DOI

Chao K.C., Chao K.F., Fu Y.S., Liu S.H. Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE. 2008;3:e1451. doi: 10.1371/journal.pone.0001451. PubMed DOI PMC

Wu K.H., Zhou B., Lu S.H., Feng B., Yang S.G., Du W.T., Gu D.S., Han Z.C., Liu Y.L. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J. Cell. Biochem. 2007;100:608–616. doi: 10.1002/jcb.21078. PubMed DOI

Huang P., Lin L.M., Wu X.Y., Tang Q.L., Feng X.Y., Lin G.Y., Lin X., Wang H.W., Huang T.H., Ma L. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J. Cell. Biochem. 2010;109:747–754. doi: 10.1002/jcb.22453. PubMed DOI

Hu Y., Liang J., Cui H.P., Wang X.M., Rong H., Shao B., Cui H. Wharton’s jelly mesenchymal stem cells differentiate into retinal progenitor cells. Neural Regen. Res. 2013;8:1783–1792. PubMed PMC

Zhou C., Yang B., Tian Y., Jiao H., Zheng W., Wang J., Guan F. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell. Immunol. 2011;272:33–38. doi: 10.1016/j.cellimm.2011.09.010. PubMed DOI PMC

Karaöz E., Demircan P.Ç., Erman G., Güngörürler E., Sarıboyacı A.E. Comparative analyses of immunosuppressive characteristics of bone-marrow, Wharton’s jelly, and adipose tissue-derived human mesenchymal stem cells. Turk. J. Hematol. 2017;34:213–225. PubMed PMC

Deng Y., Yi S., Wang G., Cheng J., Zhang Y., Chen W., Tai Y., Chen S., Chen G., Liu W., et al. Umbilical cord-derived mesenchymal stem cells instruct dendritic cells to acquire tolerogenic phenotypes through the IL-6-mediated upregulation of SOCS1. Stem Cells Dev. 2014;23:2080–2092. doi: 10.1089/scd.2013.0559. PubMed DOI

Paladino F.V., Sardinha L.R., Piccinato C.A., Goldberg A.C. Intrinsic variability present in Wharton’s jelly mesenchymal stem cells and T cell responses may impact cell therapy. Stem Cells Int. 2017;2017:8492797. doi: 10.1155/2017/8492797. PubMed DOI PMC

Donders R., Bogie J.F.J., Ravanidis S., Gervois P., Vanheusden M., Marée R., Schrynemackers M., Smeets H.J.M., Pinxteren J., Gijbels K., et al. Human Wharton’s jelly-derived stem cells display a distinct immunomodulatory and proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells Dev. 2018;27:65–84. doi: 10.1089/scd.2017.0029. PubMed DOI

Gauthaman K., Fong C.Y., Suganya C.A., Subramanian A., Biswas A., Choolani M., Bongso A. Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reprod. Biomed. Online. 2012;24:235–246. doi: 10.1016/j.rbmo.2011.10.007. PubMed DOI

Weiss M.L., Medicetty S., Bledsoe A.R., Rachakatla R.S., Choi M., Merchav S., Luo Y., Rao M.S., Velagaleti G., Troyer D. Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24:781–792. doi: 10.1634/stemcells.2005-0330. PubMed DOI

Fu Y.-S., Cheng Y.-C., Lin M.-Y.A., Cheng H., Chu P.-M., Chou S.-C., Shih Y.-H., Ko M.-H., Sung M.-S. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: Potential therapeutic application for Parkinsonism. Stem Cells. 2006;24:115–124. doi: 10.1634/stemcells.2005-0053. PubMed DOI

Krupa P., Vackova I., Ruzicka J., Zaviskova K., Dubisova J., Koci Z., Turnovcova K., Urdzikova L.M., Kubinova S., Rehak S., et al. The effect of human mesenchymal stem cells derived from Wharton’s Jelly in spinal cord injury treatment is dose-dependent and can be facilitated by repeated application. Int. J. Mol. Sci. 2018;19:1503. doi: 10.3390/ijms19051503. PubMed DOI PMC

Chudickova M., Vackova I., Urdzikova L.M., Jancova P., Kekulova K., Rehorova M., Turnovcova K., Jendelova P., Kubinova S. The effect of Wharton jelly-derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int. J. Mol. Sci. 2019;20:4516. doi: 10.3390/ijms20184516. PubMed DOI PMC

Ding D.C., Shyu W.C., Chiang M.F., Lin S.Z., Chang Y.C., Wang H.J., Su C.Y., Li H. Enhancement of neuroplasticity through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol. Dis. 2007;27:339–353. doi: 10.1016/j.nbd.2007.06.010. PubMed DOI

Kadam S.S., Bhonde R.R. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells. Islets. 2010;2:112–120. doi: 10.4161/isl.2.2.11280. PubMed DOI

Moodley Y., Atienza D., Manuelpillai U., Samuel C.S., Tchongue J., Ilancheran S., Boyd R., Trounson A. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am. J. Pathol. 2009;175:303–313. doi: 10.2353/ajpath.2009.080629. PubMed DOI PMC

Tsai P.C., Fu T.W., Chen Y.M.A., Ko T.L., Chen T.H., Shih Y.H., Hung S.C., Fu Y.S. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplant. 2009;15:484–495. doi: 10.1002/lt.21715. PubMed DOI

Sabapathy V., Sundaram B., Vm S., Mankuzhy P., Kumar S. Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS ONE. 2014;9:e93726. doi: 10.1371/journal.pone.0093726. PubMed DOI PMC

Zhang W., Liu X.C., Yang L., Zhu D.L., Zhang Y.D., Chen Y., Zhang H.Y. Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron. Artery Dis. 2013;24:549–558. doi: 10.1097/MCA.0b013e3283640f00. PubMed DOI

Nascimento D.S., Mosqueira D., Sousa L.M., Teixeira M., Filipe M., Resende T.P., Araújo A.F., Valente M., Almeida J., Martins J.P., et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res. Ther. 2014;5:5. doi: 10.1186/scrt394. PubMed DOI PMC

Matsuzuka T., Rachakatla R.S., Doi C., Maurya D.K., Ohta N., Kawabata A., Pyle M.M., Pickel L., Reischman J., Marini F., et al. Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer. 2010;70:28–36. doi: 10.1016/j.lungcan.2010.01.003. PubMed DOI PMC

Ayuzawa R., Doi C., Rachakatla R.S., Pyle M.M., Maurya D.K., Troyer D., Tamura M. Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett. 2009;280:31–37. doi: 10.1016/j.canlet.2009.02.011. PubMed DOI PMC

Ma Y., Hao X., Zhang S., Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res. Treat. 2012;133:473–485. doi: 10.1007/s10549-011-1774-x. PubMed DOI

Can A., Celikkan F.T., Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy. 2017;19:1351–1382. doi: 10.1016/j.jcyt.2017.08.004. PubMed DOI

Gao L.R., Chen Y., Zhang N.K., Yang X.L., Liu H.L., Wang Z.G., Yan X.Y., Wang Y., Zhu Z.M., Li T.C., et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: Double-blind, randomized controlled trial. BMC Med. 2015;13:162. doi: 10.1186/s12916-015-0399-z. PubMed DOI PMC

Barczewska M., Grudniak M., Maksymowicz S., Siwek T., Oldak T., Jezierska-Wozniak K., Gladysz D., Maksymowicz W. Safety of intrathecal injection of Wharton’s jellyderived mesenchymal stem cells in amyotrophic lateral sclerosis therapy. Neural Regen. Res. 2019;14:313–318. PubMed PMC

Zhang Z., Fu J., Xu X., Wang S., Xu R., Zhao M., Nie W., Wang X., Zhang J., Li T., et al. Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. Aids. 2013;27:1283–1293. doi: 10.1097/QAD.0b013e32835fab77. PubMed DOI PMC

Wang D., Li J., Zhang Y., Zhang M., Chen J., Li X., Hu X., Jiang S., Shi S., Sun L. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: A multicenter clinical study. Arthritis Res. Ther. 2014;16:R79. doi: 10.1186/ar4520. PubMed DOI PMC

Lu Z., Ye D., Qian L., Zhu L., Wang C., Guan D., Zhang X., Xu Y. Human umbilical cord mesenchymal stem cell therapy on neuromyelitis optica. Curr. Neurovasc. Res. 2012;9:250–255. doi: 10.2174/156720212803530708. PubMed DOI

Wang L., Wang L., Cong X., Liu G., Zhou J., Bai B., Li Y., Bai W., Li M., Ji H., et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev. 2013;22:3192–3202. doi: 10.1089/scd.2013.0023. PubMed DOI

Wang D., Feng X., Lu L., Konkel J.E., Zhang H., Chen Z., Li X., Gao X., Lu L., Shi S., et al. A CD8 T cell/indoleamine 2,3-dioxygenase axis is required for mesenchymal stem cell suppression of human systemic lupus erythematosus. Arthritis Rheumatol. 2014;66:2234–2245. doi: 10.1002/art.38674. PubMed DOI PMC

Hu J., Yu X., Wang Z., Wang F., Wang L., Gao H., Chen Y., Zhao W., Jia Z., Yan S., et al. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr. J. 2013;60:347–357. doi: 10.1507/endocrj.EJ12-0343. PubMed DOI

Liu X., Zheng P., Wang X., Dai G., Cheng H., Zhang Z., Hua R., Niu X., Shi J., An Y. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res. Ther. 2014;5:57. doi: 10.1186/scrt446. PubMed DOI PMC

Lv Y.T., Zhang Y., Liu M., Qiuwaxi J.-n.-t., Ashwood P., Cho S.C., Huan Y., Ge R.C., Chen X.W., Wang Z.J., et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J. Transl. Med. 2013;11:196. doi: 10.1186/1479-5876-11-196. PubMed DOI PMC

Wu K.H., Tsai C., Wu H.P., Sieber M., Peng C.T., Chao Y.H. Human application of ex vivo expanded umbilical cord-derived mesenchymal stem cells: Enhance hematopoiesis after cord blood transplantation. Cell Transplant. 2013;22:2041–2051. doi: 10.3727/096368912X663533. PubMed DOI

Fung M., Yuan Y., Atkins H., Shi Q., Bubela T. Responsible Translation of Stem Cell Research: An Assessment of Clinical Trial Registration and Publications. Stem Cell Rep. 2017;8:1190–1201. doi: 10.1016/j.stemcr.2017.03.013. PubMed DOI PMC

Daley G.Q., Hyun I., Apperley J.F., Barker R.A., Benvenisty N., Bredenoord A.L., Breuer C.K., Caulfield T., Cedars M.I., Frey-Vasconcells J., et al. Setting global standards for stem cell research and clinical translation: The 2016 ISSCR guidelines. Stem Cell Rep. 2016;6:787–797. doi: 10.1016/j.stemcr.2016.05.001. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...