Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture

. 2019 Feb ; 151 (2) : 125-143. [epub] 20181031

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30382374

Grantová podpora
2014/15/B/NZ7/00999 Polish National Centre of Science
UMO-2012/07/N/NZ5/00069 Polish National Centre of Science
502-01-02227367-08414 Poznan University of Medical Sciences

Odkazy

PubMed 30382374
PubMed Central PMC6394675
DOI 10.1007/s00418-018-1750-1
PII: 10.1007/s00418-018-1750-1
Knihovny.cz E-zdroje

The human ovarian granulosa cells (GCs) surround the oocyte and form the proper architecture of the ovarian follicle. The ability of GCs to proliferate and differentiate in the conditions of in vitro culture has been proven. However, there is still a large field for extensive investigation of molecular basics, as well as marker genes, responsible for these processes. This study aimed to find the new marker genes, encoding proteins that regulate human GCs in vitro capability for proliferation and differentiation during long-term primary culture. The human follicular GCs were collected from hyper-stimulated ovarian follicles during IVF procedures and transferred to a long-term in vitro culture. The culture lasted for 30 days, with RNA samples isolated at days 1, 7, 15, 30. Transcriptomic analysis was then performed with the use of Affymetrix microarray. Obtained results were then subjected to bioinformatical evaluation and sorting. After subjecting the datasets to KEGG analysis, three differentially expressed ontology groups "cell differentiation" (GO:0030154), "cell proliferation" (GO:0008283) and "cell-cell junction organization" (GO:0045216) were chosen for further investigation. All three of those ontology groups are involved in human GCs' in vitro lifespan, proliferation potential, and survival capability. Changes in expression of genes of interest belonging to the chosen GOs were validated with the use of RT-qPCR. In this manuscript, we suggest that VCL, PARVA, FZD2, NCS1, and COL5A1 may be recognized as new markers of GC in vitro differentiation, while KAT2B may be a new marker of their proliferation. Additionally, SKI, GLI2, FERMT2, and CDH2 could also be involved in GC in vitro proliferation and differentiation processes. We demonstrated that, in long-term in vitro culture, GCs exhibit markers that suggest their ability to differentiate into different cells types. Therefore, the higher expression profile of these genes may also be associated with the induction of cellular differentiation processes that take place beyond the long-term primary in vitro culture.

Zobrazit více v PubMed

Abumaree MH, Al Jumah MA, Kalionis B, et al. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev Rep. 2013;9:16–31. doi: 10.1007/s12015-012-9385-4. PubMed DOI

Anderson RA, Sciorio R, Kinnell H, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009;138:629–637. doi: 10.1530/REP-09-0144. PubMed DOI

Antosik P, Kempisty B, Jackowska M, et al. Assessment of transcript and protein levels contributing to cell cycle control and gap junction connections in morphologically variable groups of porcine cumulus-oocyte complexes. Vet Med (Praha) 2010;55:512–521. doi: 10.17221/2941-VETMED. DOI

Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17:170–182. doi: 10.1038/nrm.2015.27. PubMed DOI

Basini G, Falasconi I, Bussolati S, et al. Swine granulosa cells show typical endothelial cell characteristics. Reprod Sci. 2016;23:630–637. doi: 10.1177/1933719115612130. PubMed DOI

Ben-Ze’ev A, Amsterdam A. In vitro regulation of granulosa cell differentiation. Involvement of cytoskeletal protein expression. J Biol Chem. 1987;262:5366–5376. PubMed

Bertolacini C, Ribeiro-Bicudo L, Petrin A, et al. Clinical findings in patients with GLI2 mutations—phenotypic variability. Clin Genet. 2012;81:70–75. doi: 10.1111/j.1399-0004.2010.01606.x. PubMed DOI PMC

Brevini TAL, Pennarossa G, Rahman MM, et al. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev Rep. 2014;10:633–642. doi: 10.1007/s12015-014-9521-4. PubMed DOI

Budna J, Celichowski P, Karimi P, et al. Does porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Adv Cell Biol. 2017;5:1–14. doi: 10.1515/acb-2017-0001. DOI

Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001;353:1–12. doi: 10.1042/bj3530001. PubMed DOI PMC

Chachuła A, Kranc W, Budna J, et al. The differentiation of mammalian ovarian granulosa cells living in the shadow of cellular developmental capacity. J Biol Regul Homeost Agents. 2016;30:627–634. PubMed

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Chung F-Z, Sahasrabuddhe AA, Ma K, et al. Fbxo45 inhibits calcium-sensitive proteolysis of N-cadherin and promotes neuronal differentiation. J Biol Chem. 2014;289:28448–28459. doi: 10.1074/jbc.M114.561241. PubMed DOI PMC

De Castro E, Nef S, Fiumelli H, et al. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem Biophys Res Commun. 1995;216:133–140. doi: 10.1006/bbrc.1995.2601. PubMed DOI

Doyle AJ, Doyle JJ, Bessling SL, et al. Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012;44:1249–1254. doi: 10.1038/ng.2421. PubMed DOI PMC

Dumesic DA, Meldrum DR, Katz-Jaffe MG, et al. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–316. doi: 10.1016/j.fertnstert.2014.11.015. PubMed DOI

Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30:1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC

Dzafic E, Stimpfel M, Novakovic S, et al. Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. Biomed Res Int. 2014;2014:508216. doi: 10.1155/2014/508216. PubMed DOI PMC

Ebner R, Chen RH, Shum L, et al. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science. 1993;260:1344–1348. doi: 10.1126/science.8388127. PubMed DOI

Fukuda T, Chen K, Shi X, Wu C. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J Biol Chem. 2003;278:51324–51333. doi: 10.1074/jbc.M309122200. PubMed DOI

Gao F, Zhang J, Wang X, et al. Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum Mol Genet. 2014;23:333–341. doi: 10.1093/hmg/ddt423. PubMed DOI

Gao Y, Vincent DF, Davis AJ, et al. Constitutively active transforming growth factor β receptor 1 in the mouse ovary promotes tumorigenesis. Oncotarget. 2016;7:4090440918. PubMed PMC

Gao Y, Fang X, Vincent DF, et al. Disruption of postnatal folliculogenesis and development of ovarian tumor in a mouse model with aberrant transforming growth factor beta signaling. Reprod Biol Endocrinol. 2017;15:94. doi: 10.1186/s12958-017-0312-z. PubMed DOI PMC

Hancock JT. Cell signalling. Oxford: Oxford University Press; 2017.

Hong D, Chen H-X, Yu H-Q, et al. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp Cell Res. 2010;316:2291–2300. doi: 10.1016/j.yexcr.2010.05.011. PubMed DOI PMC

Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC

Hummitzsch K, Anderson RA, Wilhelm D, et al. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev. 2015;36:65–91. doi: 10.1210/er.2014-1079. PubMed DOI PMC

Israeli-Rosenberg S, Manso AM, Okada H, Ross RS. Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res. 2014;114:572–586. doi: 10.1161/CIRCRESAHA.114.301275. PubMed DOI PMC

Jankowski M, Dyszkiewicz-Konwińska M, Budna J, et al. The differentiation and transdifferentiation of epithelial cells in vitro—is it a new strategy in regenerative biomedicine? Med J Cell Biol. 2018;6:27–32. doi: 10.2478/acb-2018-0005. DOI

Juengel JL, Bibby AH, Reader KL, et al. The role of transforming growth factor-beta (TGF-beta) during ovarian follicular development in sheep. Reprod Biol Endocrinol. 2004;2:78. doi: 10.1186/1477-7827-2-78. PubMed DOI PMC

Kempisty B, Ziółkowska A, Ciesiółka S, et al. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J Biol Regul Homeost Agents. 2014;28:625–635. PubMed

Kempisty B, Ziółkowska A, Piotrowska H, et al. Expression and cellular distribution of cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) in porcine oocytes before and after in vitro maturation. Acta Vet Hung. 2014;62:84–95. doi: 10.1556/AVet.2013.039. PubMed DOI

Kempisty B, Wojtanowicz-Markiewicz K, Ziółkowska A, et al. Association between progesterone and estradiol-17beta treatment and protein expression of pgr and PGRMC1 in porcine luminal epithelial cells: a real-time cell proliferation approach. J Biol Regul Homeost Agents. 2015;29:39–50. PubMed

Kim H, Kim DH, Park SB, et al. Induction of ski protein expression upon luteinization in rat granulosa cells. Asian Aust J Anim Sci. 2012;25:635–641. doi: 10.5713/ajas.2011.11336. PubMed DOI PMC

Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8:133–146. doi: 10.1101/gad.8.2.133. PubMed DOI

Korenbaum E, Olski TM, Noegel AA. Genomic organization and expression profile of the parvin family of focal adhesion proteins in mice and humans. Gene. 2001;279:69–79. doi: 10.1016/S0378-1119(01)00743-0. PubMed DOI

Kossowska-Tomaszczuk K, De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013;2013:310859. doi: 10.1155/2013/310859. PubMed DOI PMC

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI

Kossowska-Tomaszczuk K, Pelczar P, Güven S, et al. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 2010;16:2063–2073. doi: 10.1089/ten.tea.2009.0684. PubMed DOI

Kranc W, Chachuła A, Bryja A, et al. Selected molecular and physiological aspects of mammalian ovarian granulosa cells in primary culture. Med Weter. 2016;72:723–727.

Kranc W, Brązert M, Ożegowska K, et al. Expression profile of genes regulating steroid biosynthesis and metabolism in human ovarian granulosa cells—a primary culture approach. Int J Mol Sci. 2017;18:2673. doi: 10.3390/ijms18122673. PubMed DOI PMC

Kranc W, Budna J, Kahan R, et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents. 2017;31:1–8. PubMed

Kranc W, Celichowski P, Budna J, et al. Positive regulation of macromolecule metabolic process belongs to the main mechanisms crucial for porcine oocytes maturation. Adv Cell Biol. 2017;5:15–31. doi: 10.1515/acb-2017-0002. DOI

Kranc W, Jankowski M, Budna J, et al. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro—a signaling pathways activation approach. Med J Cell Biol. 2018;6:18–26. doi: 10.2478/acb-2018-0004. DOI

Kranen RW, Overes HW, Kloosterboer HJ, Poels LG. The expression of cytoskeletal proteins during the differentiation of rat granulosa cells. Hum Reprod. 1993;8:24–29. doi: 10.1093/oxfordjournals.humrep.a137868. PubMed DOI

Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1831. doi: 10.1093/bioinformatics/btt285. PubMed DOI PMC

Ma Y-Q, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of β 3 integrins. J Cell Biol. 2008;181:439–446. doi: 10.1083/jcb.200710196. PubMed DOI PMC

Niswender GD, Juengel JL, Silva PJ, et al. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80:1–29. doi: 10.1152/physrev.2000.80.1.1. PubMed DOI

Oki Y, Ono H, Motohashi T, et al. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem J. 2012;447:239–248. doi: 10.1042/BJ20120172. PubMed DOI PMC

Paradis F, Novak S, Murdoch GK, et al. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction. 2009;138:115–129. doi: 10.1530/REP-08-0538. PubMed DOI

Quinn MCJ, McGregor SB, Stanton JL, et al. Purification of granulosa cells from human ovarian follicular fluid using granulosa cell aggregates. Reprod Fertil Dev. 2006;18:501–508. doi: 10.1071/RD05051. PubMed DOI

Ribeiro A, Freitas C, Matos L, et al. Age-related expression of TGF beta family receptors in human cumulus oophorus cells. J Assist Reprod Genet. 2017;34:1121–1129. doi: 10.1007/s10815-017-0930-6. PubMed DOI PMC

Russell DL, Gilchrist RB, Brown HM, Thompson JG. Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology. 2016;86:62–68. doi: 10.1016/j.theriogenology.2016.04.019. PubMed DOI

Rybska M, Knap S, Jankowski M, et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med J Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI

Silva JRV, van den Hurk R, van Tol HTA, et al. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol Reprod Dev. 2005;70:11–19. doi: 10.1002/mrd.20127. PubMed DOI

Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117–149. doi: 10.1210/er.2006-0022. PubMed DOI

Tanghe S, Van Soom A, Nauwynck H, et al. Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61:414–424. doi: 10.1002/mrd.10102. PubMed DOI

Tripurani SK, Cook RW, Eldin KW, Pangas SA. BMP-specific SMADs function as novel repressors of PDGFA and modulate its expression in ovarian granulosa cells and tumors. Oncogene. 2013;32:3877–3885. doi: 10.1038/onc.2012.392. PubMed DOI PMC

Truman AM, Tilly JL, Woods DC. Ovarian regeneration: the potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Mol Cell Endocrinol. 2017;445:74–84. doi: 10.1016/j.mce.2016.10.012. PubMed DOI PMC

Tsafriri A, Channing CP. An inhibitory influence of granulosa cells and follicular fluid upon porcine oocyte meiosis in vitro. Endocrinology. 1975;96:922–927. doi: 10.1210/endo-96-4-922. PubMed DOI

Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17:319–336. doi: 10.1007/s00198-005-2035-9. PubMed DOI

von Mering C, Jensen LJ, Snel B, et al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2004;33:D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC

Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI

Wang C, Roy SK. Expression of E-cadherin and N-cadherin in perinatal hamster ovary: possible involvement in primordial follicle formation and regulation by follicle-stimulating hormone. Endocrinology. 2010;151:2319–2330. doi: 10.1210/en.2009-1489. PubMed DOI PMC

Wang H-X, Tekpetey FR, Kidder GM. Identification of WNT/beta-CATENIN signaling pathway components in human cumulus cells. Mol Hum Reprod. 2009;15:11–17. doi: 10.1093/molehr/gan070. PubMed DOI

Wang SB, Xing BS, Yi L, et al. Expression of Frizzled 2 in the mouse ovary during oestrous cycle. J Anim Physiol Anim Nutr (Berl) 2010;94:437–445. PubMed

Weller PA, Ogryzko EP, Corben EB, et al. Complete sequence of human vinculin and assignment of the gene to chromosome 10. Proc Natl Acad Sci USA. 1990;87:5667–5671. doi: 10.1073/pnas.87.15.5667. PubMed DOI PMC

Wu C, Jiao H, Lai Y, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531. doi: 10.1038/ncomms8531. PubMed DOI PMC

Yang X-J, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature. 1996;382:319–324. doi: 10.1038/382319a0. PubMed DOI

Yang M, Du J, Lu D, et al. Increased expression of kindlin 2 in luteinized granulosa cells correlates with androgen receptor level in patients with polycystic ovary syndrome having hyperandrogenemia. Reprod Sci. 2014;21:696–703. doi: 10.1177/1933719113512536. PubMed DOI PMC

Yenuganti VR, Vanselow J. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions. Cell Tissue Res. 2017;368:397–403. doi: 10.1007/s00441-017-2571-6. PubMed DOI PMC

Zhao Z, Lee CC, Baldini A, Caskey CT. A human homologue of the drosophila polarity gene frizzled has been identified and mapped to 17q21.1. Genomics. 1995;27:370–373. doi: 10.1006/geno.1995.1060. PubMed DOI

Zhao M, Qiao M, Harris SE, et al. The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol. 2006;26:6197–6208. doi: 10.1128/MCB.02214-05. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...