Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2014/15/B/NZ7/00999
Polish National Centre of Science
UMO-2012/07/N/NZ5/00069
Polish National Centre of Science
502-01-02227367-08414
Poznan University of Medical Sciences
PubMed
30382374
PubMed Central
PMC6394675
DOI
10.1007/s00418-018-1750-1
PII: 10.1007/s00418-018-1750-1
Knihovny.cz E-zdroje
- Klíčová slova
- Differentiation, Granulosa cells, Microarrays, Proliferation, Stem cells,
- MeSH
- adhezní spoje metabolismus MeSH
- buněčná adheze genetika MeSH
- buněčná diferenciace genetika MeSH
- dospělí MeSH
- folikulární buňky cytologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- ovarium cytologie MeSH
- proliferace buněk genetika MeSH
- upregulace * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The human ovarian granulosa cells (GCs) surround the oocyte and form the proper architecture of the ovarian follicle. The ability of GCs to proliferate and differentiate in the conditions of in vitro culture has been proven. However, there is still a large field for extensive investigation of molecular basics, as well as marker genes, responsible for these processes. This study aimed to find the new marker genes, encoding proteins that regulate human GCs in vitro capability for proliferation and differentiation during long-term primary culture. The human follicular GCs were collected from hyper-stimulated ovarian follicles during IVF procedures and transferred to a long-term in vitro culture. The culture lasted for 30 days, with RNA samples isolated at days 1, 7, 15, 30. Transcriptomic analysis was then performed with the use of Affymetrix microarray. Obtained results were then subjected to bioinformatical evaluation and sorting. After subjecting the datasets to KEGG analysis, three differentially expressed ontology groups "cell differentiation" (GO:0030154), "cell proliferation" (GO:0008283) and "cell-cell junction organization" (GO:0045216) were chosen for further investigation. All three of those ontology groups are involved in human GCs' in vitro lifespan, proliferation potential, and survival capability. Changes in expression of genes of interest belonging to the chosen GOs were validated with the use of RT-qPCR. In this manuscript, we suggest that VCL, PARVA, FZD2, NCS1, and COL5A1 may be recognized as new markers of GC in vitro differentiation, while KAT2B may be a new marker of their proliferation. Additionally, SKI, GLI2, FERMT2, and CDH2 could also be involved in GC in vitro proliferation and differentiation processes. We demonstrated that, in long-term in vitro culture, GCs exhibit markers that suggest their ability to differentiate into different cells types. Therefore, the higher expression profile of these genes may also be associated with the induction of cellular differentiation processes that take place beyond the long-term primary in vitro culture.
Department of Anatomy Poznan University of Medical Sciences 6 Święcickiego St 60 781 Poznań Poland
Division of Anatomy and Histology University of Zielona Góra Zielona Góra Poland
Zobrazit více v PubMed
Abumaree MH, Al Jumah MA, Kalionis B, et al. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev Rep. 2013;9:16–31. doi: 10.1007/s12015-012-9385-4. PubMed DOI
Anderson RA, Sciorio R, Kinnell H, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009;138:629–637. doi: 10.1530/REP-09-0144. PubMed DOI
Antosik P, Kempisty B, Jackowska M, et al. Assessment of transcript and protein levels contributing to cell cycle control and gap junction connections in morphologically variable groups of porcine cumulus-oocyte complexes. Vet Med (Praha) 2010;55:512–521. doi: 10.17221/2941-VETMED. DOI
Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17:170–182. doi: 10.1038/nrm.2015.27. PubMed DOI
Basini G, Falasconi I, Bussolati S, et al. Swine granulosa cells show typical endothelial cell characteristics. Reprod Sci. 2016;23:630–637. doi: 10.1177/1933719115612130. PubMed DOI
Ben-Ze’ev A, Amsterdam A. In vitro regulation of granulosa cell differentiation. Involvement of cytoskeletal protein expression. J Biol Chem. 1987;262:5366–5376. PubMed
Bertolacini C, Ribeiro-Bicudo L, Petrin A, et al. Clinical findings in patients with GLI2 mutations—phenotypic variability. Clin Genet. 2012;81:70–75. doi: 10.1111/j.1399-0004.2010.01606.x. PubMed DOI PMC
Brevini TAL, Pennarossa G, Rahman MM, et al. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev Rep. 2014;10:633–642. doi: 10.1007/s12015-014-9521-4. PubMed DOI
Budna J, Celichowski P, Karimi P, et al. Does porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Adv Cell Biol. 2017;5:1–14. doi: 10.1515/acb-2017-0001. DOI
Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001;353:1–12. doi: 10.1042/bj3530001. PubMed DOI PMC
Chachuła A, Kranc W, Budna J, et al. The differentiation of mammalian ovarian granulosa cells living in the shadow of cellular developmental capacity. J Biol Regul Homeost Agents. 2016;30:627–634. PubMed
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Chung F-Z, Sahasrabuddhe AA, Ma K, et al. Fbxo45 inhibits calcium-sensitive proteolysis of N-cadherin and promotes neuronal differentiation. J Biol Chem. 2014;289:28448–28459. doi: 10.1074/jbc.M114.561241. PubMed DOI PMC
De Castro E, Nef S, Fiumelli H, et al. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem Biophys Res Commun. 1995;216:133–140. doi: 10.1006/bbrc.1995.2601. PubMed DOI
Doyle AJ, Doyle JJ, Bessling SL, et al. Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012;44:1249–1254. doi: 10.1038/ng.2421. PubMed DOI PMC
Dumesic DA, Meldrum DR, Katz-Jaffe MG, et al. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–316. doi: 10.1016/j.fertnstert.2014.11.015. PubMed DOI
Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30:1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC
Dzafic E, Stimpfel M, Novakovic S, et al. Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. Biomed Res Int. 2014;2014:508216. doi: 10.1155/2014/508216. PubMed DOI PMC
Ebner R, Chen RH, Shum L, et al. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science. 1993;260:1344–1348. doi: 10.1126/science.8388127. PubMed DOI
Fukuda T, Chen K, Shi X, Wu C. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J Biol Chem. 2003;278:51324–51333. doi: 10.1074/jbc.M309122200. PubMed DOI
Gao F, Zhang J, Wang X, et al. Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum Mol Genet. 2014;23:333–341. doi: 10.1093/hmg/ddt423. PubMed DOI
Gao Y, Vincent DF, Davis AJ, et al. Constitutively active transforming growth factor β receptor 1 in the mouse ovary promotes tumorigenesis. Oncotarget. 2016;7:4090440918. PubMed PMC
Gao Y, Fang X, Vincent DF, et al. Disruption of postnatal folliculogenesis and development of ovarian tumor in a mouse model with aberrant transforming growth factor beta signaling. Reprod Biol Endocrinol. 2017;15:94. doi: 10.1186/s12958-017-0312-z. PubMed DOI PMC
Hancock JT. Cell signalling. Oxford: Oxford University Press; 2017.
Hong D, Chen H-X, Yu H-Q, et al. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp Cell Res. 2010;316:2291–2300. doi: 10.1016/j.yexcr.2010.05.011. PubMed DOI PMC
Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC
Hummitzsch K, Anderson RA, Wilhelm D, et al. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev. 2015;36:65–91. doi: 10.1210/er.2014-1079. PubMed DOI PMC
Israeli-Rosenberg S, Manso AM, Okada H, Ross RS. Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res. 2014;114:572–586. doi: 10.1161/CIRCRESAHA.114.301275. PubMed DOI PMC
Jankowski M, Dyszkiewicz-Konwińska M, Budna J, et al. The differentiation and transdifferentiation of epithelial cells in vitro—is it a new strategy in regenerative biomedicine? Med J Cell Biol. 2018;6:27–32. doi: 10.2478/acb-2018-0005. DOI
Juengel JL, Bibby AH, Reader KL, et al. The role of transforming growth factor-beta (TGF-beta) during ovarian follicular development in sheep. Reprod Biol Endocrinol. 2004;2:78. doi: 10.1186/1477-7827-2-78. PubMed DOI PMC
Kempisty B, Ziółkowska A, Ciesiółka S, et al. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J Biol Regul Homeost Agents. 2014;28:625–635. PubMed
Kempisty B, Ziółkowska A, Piotrowska H, et al. Expression and cellular distribution of cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) in porcine oocytes before and after in vitro maturation. Acta Vet Hung. 2014;62:84–95. doi: 10.1556/AVet.2013.039. PubMed DOI
Kempisty B, Wojtanowicz-Markiewicz K, Ziółkowska A, et al. Association between progesterone and estradiol-17beta treatment and protein expression of pgr and PGRMC1 in porcine luminal epithelial cells: a real-time cell proliferation approach. J Biol Regul Homeost Agents. 2015;29:39–50. PubMed
Kim H, Kim DH, Park SB, et al. Induction of ski protein expression upon luteinization in rat granulosa cells. Asian Aust J Anim Sci. 2012;25:635–641. doi: 10.5713/ajas.2011.11336. PubMed DOI PMC
Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8:133–146. doi: 10.1101/gad.8.2.133. PubMed DOI
Korenbaum E, Olski TM, Noegel AA. Genomic organization and expression profile of the parvin family of focal adhesion proteins in mice and humans. Gene. 2001;279:69–79. doi: 10.1016/S0378-1119(01)00743-0. PubMed DOI
Kossowska-Tomaszczuk K, De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013;2013:310859. doi: 10.1155/2013/310859. PubMed DOI PMC
Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI
Kossowska-Tomaszczuk K, Pelczar P, Güven S, et al. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 2010;16:2063–2073. doi: 10.1089/ten.tea.2009.0684. PubMed DOI
Kranc W, Chachuła A, Bryja A, et al. Selected molecular and physiological aspects of mammalian ovarian granulosa cells in primary culture. Med Weter. 2016;72:723–727.
Kranc W, Brązert M, Ożegowska K, et al. Expression profile of genes regulating steroid biosynthesis and metabolism in human ovarian granulosa cells—a primary culture approach. Int J Mol Sci. 2017;18:2673. doi: 10.3390/ijms18122673. PubMed DOI PMC
Kranc W, Budna J, Kahan R, et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents. 2017;31:1–8. PubMed
Kranc W, Celichowski P, Budna J, et al. Positive regulation of macromolecule metabolic process belongs to the main mechanisms crucial for porcine oocytes maturation. Adv Cell Biol. 2017;5:15–31. doi: 10.1515/acb-2017-0002. DOI
Kranc W, Jankowski M, Budna J, et al. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro—a signaling pathways activation approach. Med J Cell Biol. 2018;6:18–26. doi: 10.2478/acb-2018-0004. DOI
Kranen RW, Overes HW, Kloosterboer HJ, Poels LG. The expression of cytoskeletal proteins during the differentiation of rat granulosa cells. Hum Reprod. 1993;8:24–29. doi: 10.1093/oxfordjournals.humrep.a137868. PubMed DOI
Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1831. doi: 10.1093/bioinformatics/btt285. PubMed DOI PMC
Ma Y-Q, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of β 3 integrins. J Cell Biol. 2008;181:439–446. doi: 10.1083/jcb.200710196. PubMed DOI PMC
Niswender GD, Juengel JL, Silva PJ, et al. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80:1–29. doi: 10.1152/physrev.2000.80.1.1. PubMed DOI
Oki Y, Ono H, Motohashi T, et al. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem J. 2012;447:239–248. doi: 10.1042/BJ20120172. PubMed DOI PMC
Paradis F, Novak S, Murdoch GK, et al. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction. 2009;138:115–129. doi: 10.1530/REP-08-0538. PubMed DOI
Quinn MCJ, McGregor SB, Stanton JL, et al. Purification of granulosa cells from human ovarian follicular fluid using granulosa cell aggregates. Reprod Fertil Dev. 2006;18:501–508. doi: 10.1071/RD05051. PubMed DOI
Ribeiro A, Freitas C, Matos L, et al. Age-related expression of TGF beta family receptors in human cumulus oophorus cells. J Assist Reprod Genet. 2017;34:1121–1129. doi: 10.1007/s10815-017-0930-6. PubMed DOI PMC
Russell DL, Gilchrist RB, Brown HM, Thompson JG. Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology. 2016;86:62–68. doi: 10.1016/j.theriogenology.2016.04.019. PubMed DOI
Rybska M, Knap S, Jankowski M, et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med J Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI
Silva JRV, van den Hurk R, van Tol HTA, et al. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol Reprod Dev. 2005;70:11–19. doi: 10.1002/mrd.20127. PubMed DOI
Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117–149. doi: 10.1210/er.2006-0022. PubMed DOI
Tanghe S, Van Soom A, Nauwynck H, et al. Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61:414–424. doi: 10.1002/mrd.10102. PubMed DOI
Tripurani SK, Cook RW, Eldin KW, Pangas SA. BMP-specific SMADs function as novel repressors of PDGFA and modulate its expression in ovarian granulosa cells and tumors. Oncogene. 2013;32:3877–3885. doi: 10.1038/onc.2012.392. PubMed DOI PMC
Truman AM, Tilly JL, Woods DC. Ovarian regeneration: the potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Mol Cell Endocrinol. 2017;445:74–84. doi: 10.1016/j.mce.2016.10.012. PubMed DOI PMC
Tsafriri A, Channing CP. An inhibitory influence of granulosa cells and follicular fluid upon porcine oocyte meiosis in vitro. Endocrinology. 1975;96:922–927. doi: 10.1210/endo-96-4-922. PubMed DOI
Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17:319–336. doi: 10.1007/s00198-005-2035-9. PubMed DOI
von Mering C, Jensen LJ, Snel B, et al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2004;33:D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC
Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI
Wang C, Roy SK. Expression of E-cadherin and N-cadherin in perinatal hamster ovary: possible involvement in primordial follicle formation and regulation by follicle-stimulating hormone. Endocrinology. 2010;151:2319–2330. doi: 10.1210/en.2009-1489. PubMed DOI PMC
Wang H-X, Tekpetey FR, Kidder GM. Identification of WNT/beta-CATENIN signaling pathway components in human cumulus cells. Mol Hum Reprod. 2009;15:11–17. doi: 10.1093/molehr/gan070. PubMed DOI
Wang SB, Xing BS, Yi L, et al. Expression of Frizzled 2 in the mouse ovary during oestrous cycle. J Anim Physiol Anim Nutr (Berl) 2010;94:437–445. PubMed
Weller PA, Ogryzko EP, Corben EB, et al. Complete sequence of human vinculin and assignment of the gene to chromosome 10. Proc Natl Acad Sci USA. 1990;87:5667–5671. doi: 10.1073/pnas.87.15.5667. PubMed DOI PMC
Wu C, Jiao H, Lai Y, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531. doi: 10.1038/ncomms8531. PubMed DOI PMC
Yang X-J, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature. 1996;382:319–324. doi: 10.1038/382319a0. PubMed DOI
Yang M, Du J, Lu D, et al. Increased expression of kindlin 2 in luteinized granulosa cells correlates with androgen receptor level in patients with polycystic ovary syndrome having hyperandrogenemia. Reprod Sci. 2014;21:696–703. doi: 10.1177/1933719113512536. PubMed DOI PMC
Yenuganti VR, Vanselow J. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions. Cell Tissue Res. 2017;368:397–403. doi: 10.1007/s00441-017-2571-6. PubMed DOI PMC
Zhao Z, Lee CC, Baldini A, Caskey CT. A human homologue of the drosophila polarity gene frizzled has been identified and mapped to 17q21.1. Genomics. 1995;27:370–373. doi: 10.1006/geno.1995.1060. PubMed DOI
Zhao M, Qiao M, Harris SE, et al. The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol. 2006;26:6197–6208. doi: 10.1128/MCB.02214-05. PubMed DOI PMC