Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells-A Primary Culture Approach

. 2017 Dec 09 ; 18 (12) : . [epub] 20171209

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29232835

Because of the deep involvement of granulosa cells in the processes surrounding the cycles of menstruation and reproduction, there is a great need for a deeper understanding of the ways in which they function during the various stages of those cycles. One of the main ways in which the granulosa cells influence the numerous sex associated processes is hormonal interaction. Expression of steroid sex hormones influences a range of both primary and secondary sexual characteristics, as well as regulate the processes of oogenesis, folliculogenesis, ovulation, and pregnancy. Understanding of the exact molecular mechanisms underlying those processes could not only provide us with deep insight into the regulation of the reproductive cycle, but also create new clinical advantages in detection and treatment of various diseases associated with sex hormone abnormalities. We have used the microarray approach validated by RT-qPCR, to analyze the patterns of gene expression in primary cultures of human granulosa cells at days 1, 7, 15, and 30 of said cultures. We have especially focused on genes belonging to ontology groups associated with steroid biosynthesis and metabolism, namely "Regulation of steroid biosynthesis process" and "Regulation of steroid metabolic process". Eleven genes have been chosen, as they exhibited major change under a culture condition. Out of those, ten genes, namely STAR, SCAP, POR, SREBF1, GFI1, SEC14L2, STARD4, INSIG1, DHCR7, and IL1B, belong to both groups. Patterns of expression of those genes were analyzed, along with brief description of their functions. That analysis helped us achieve a better understanding of the exact molecular processes underlying steroid biosynthesis and metabolism in human granulosa cells.

Zobrazit více v PubMed

Kranc W., Budna J., Kahan R., Chachuła A., Bryja A., Ciesiółka S., Borys S., Antosik M.P., Bukowska D., Brussow K.P., et al. Molecular Basis of Growth, Proliferation, and Differentiation of Mammalian Follicular Granulosa Cells. J. Biol. Regul. Homeost. Agents. 2017;31:1–8. PubMed

Kranc W., Budna J., Dudek M., Bryja A., Chachuła A., Ciesiółka S., Borys S., Dyszkiewicz-Konwińska M., Jeseta M., Porowski L., et al. The Origin, in Vitro Differentiation, and Stemness Specificity of Progenitor Cells. J. Biol. Regul. Homeost. Agents. 2017;31:365–369. PubMed

Budna J., Celichowski P., Karimi P., Kranc W., Bryja A., Ciesiółka S., Rybska M., Borys S., Jeseta M., Bukowska D., et al. Does Porcine Oocytes Maturation in Vitro Is Regulated by Genes Involved in Transforming Growth Factor Beta Receptor Signaling Pathway? Adv. Cell Biol. 2017;5:1–14. doi: 10.1515/acb-2017-0001. DOI

Kranc W., Celichowski P., Budna J., Khozmi R., Bryja A., Ciesiółka S., Rybska M., Borys S., Jeseta M., Bukowska D., et al. Positive Regulation Of Macromolecule Metabolic Process Belongs To The Main Mechanisms Crucial For Porcine Ooocytes Maturation. Adv. Cell Biol. 2017;5:15–31. doi: 10.1515/acb-2017-0002. DOI

Nawrocki M.J., Budna J., Celichowski P., Khozmi R., Bryja A., Kranc W., Borys S., Ciesiółka S., Knap S., Jeseta M., et al. Analysis of Fructose and Mannose—Regulatory Peptides Signaling Pathway in Porcine Epithelial Oviductal Cells (OECs) Primary Cultured Long-Term in Vitro. Adv. Cell Biol. 2017;5:129–135. doi: 10.1515/acb-2017-0011. DOI

Ciesiółka S., Budna J., Jopek K., Bryja A., Kranc W., Borys S., Jeseta M., Chachuła A., Ziółkowska A., Antosik P., et al. Time- and Dose-Dependent Effects of 17 Beta-Estradiol on Short-Term, Real-Time Proliferation and Gene Expression in Porcine Granulosa Cells. Biomed. Res. Int. 2017;2017:1–9. doi: 10.1155/2017/9738640. PubMed DOI PMC

Wu Y.-G., Barad D.H., Kushnir V.A., Lazzaroni E., Wang Q., Albertini D.F., Gleicher N. Aging-Related Premature Luteinization of Granulosa Cells Is Avoided by Early Oocyte Retrieval. J. Endocrinol. 2015;226:167–180. doi: 10.1530/JOE-15-0246. PubMed DOI

Borys S., Khozmi R., Kranc W., Bryja A., Dyszkiewicz-Konwińska M., Jeseta M., Kempisty B. Recent Findings of the Types of Programmed Cell Death. Adv. Cell Biol. 2017;5:43–49. doi: 10.1515/acb-2017-0004. DOI

Ciesiółka S., Bryja A., Budna J., Kranc W., Chachuła A., Bukowska D., Piotrowska H., Porowski L., Antosik P., Bruska M., et al. Epithelialization and Stromalization of Porcine Follicular Granulosa Cells during Real-Time Proliferation—A Primary Cell Culture Approach. J. Biol. Regul. Homeost. Agents. 2016;30:693–702. PubMed

Kossowska-Tomaszczuk K., De Geyter C., De Geyter M., Martin I., Holzgreve W., Scherberich A., Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem. Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI

Borys S., Khozmi R., Kranc W., Bryja A., Jeseta M., Kempisty B. Resveratrol and Its Analogues—Is It a New Strategy of Anticancer Therapy? Adv. Cell Biol. 2017;5:32–42. doi: 10.1515/acb-2017-0003. DOI

Alpy F., Tomasetto C. Give Lipids a START: The StAR-Related Lipid Transfer (START) Domain in Mammals. J. Cell Sci. 2005;118:2791–2801. doi: 10.1242/jcs.02485. PubMed DOI

Stocco D.M. Steroidogenic Acute Regulatory Protein. Vitam. Horm. 1998;55:399–441. PubMed

Clark B.J., Soo S.C., Caron K.M., Ikeda Y., Parker K.L., Stocco D.M. Hormonal and Developmental Regulation of the Steroidogenic Acute Regulatory Protein. Mol. Endocrinol. 1995;9:1346–1355. PubMed

Caron K.M., Soo S.C., Wetsel W.C., Stocco D.M., Clark B.J., Parker K.L. Targeted Disruption of the Mouse Gene Encoding Steroidogenic Acute Regulatory Protein Provides Insights into Congenital Lipoid Adrenal Hyperplasia. Proc. Natl. Acad. Sci. USA. 1997;94:11540–11545. doi: 10.1073/pnas.94.21.11540. PubMed DOI PMC

Bose H.S., Sugawara T., Strauss J.F., Miller W.L. The Pathophysiology and Genetics of Congenital Lipoid Adrenal Hyperplasia. N. Engl. J. Med. 1996;335:1870–1879. doi: 10.1056/NEJM199612193352503. PubMed DOI

Soccio R.E., Adams R.M., Romanowski M.J., Sehayek E., Burley S.K., Breslow J.L. The Cholesterol-Regulated StarD4 Gene Encodes a StAR-Related Lipid Transfer Protein with Two Closely Related Homologues, StarD5 and StarD6. Proc. Natl. Acad. Sci. USA. 2002;99:6943–6948. doi: 10.1073/pnas.052143799. PubMed DOI PMC

Rodriguez-Agudo D., Calderon-Dominguez M., Ren S., Marques D., Redford K., Medina-Torres M.A., Hylemon P., Gil G., Pandak W.M. Subcellular Localization and Regulation of StarD4 Protein in Macrophages and Fibroblasts. Biochim. Biophys. Acta. 2011;1811:597–606. doi: 10.1016/j.bbalip.2011.06.028. PubMed DOI PMC

Wang X., Sato R., Brown M.S., Hua X., Goldstein J.L. SREBP-1, a Membrane-Bound Transcription Factor Released by Sterol-Regulated Proteolysis. Cell. 1994;77:53–62. doi: 10.1016/0092-8674(94)90234-8. PubMed DOI

Brown M.S., Goldstein J.L. The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor. Cell. 1997;89:331–340. doi: 10.1016/S0092-8674(00)80213-5. PubMed DOI

Shimano H., Yahagi N., Amemiya-Kudo M., Hasty A.H., Osuga J., Tamura Y., Shionoiri F., Iizuka Y., Ohashi K., Harada K., et al. Sterol Regulatory Element-Binding Protein-1 as a Key Transcription Factor for Nutritional Induction of Lipogenic Enzyme Genes. J. Biol. Chem. 1999;274:35832–35839. doi: 10.1074/jbc.274.50.35832. PubMed DOI

Edwards P., Tabor D., Kast H.R., Venkateswaran A. Regulation of Gene Expression by SREBP and SCAP. Biochim. Biophys. Acta. 2000;1529:103–113. doi: 10.1016/S1388-1981(00)00140-2. PubMed DOI

Nohturfft A., DeBose-Boyd R.A., Scheek S., Goldstein J.L., Brown M.S. Sterols Regulate Cycling of SREBP Cleavage-Activating Protein (SCAP) between Endoplasmic Reticulum and Golgi. Proc. Natl. Acad. Sci. USA. 1999;96:11235–11240. doi: 10.1073/pnas.96.20.11235. PubMed DOI PMC

Shao W., Espenshade P.J. Sterol Regulatory Element-Binding Protein (SREBP) Cleavage Regulates Golgi-to-Endoplasmic Reticulum Recycling of SREBP Cleavage-Activating Protein (SCAP) J. Biol. Chem. 2014;289:7547–7557. doi: 10.1074/jbc.M113.545699. PubMed DOI PMC

Yang T., Espenshade P.J., Wright M.E., Yabe D., Gong Y., Aebersold R., Goldstein J.L., Brown M.S. Crucial Step in Cholesterol Homeostasis: Sterols Promote Binding of SCAP to INSIG-1, a Membrane Protein That Facilitates Retention of SREBPs in ER. Cell. 2002;110:489–500. doi: 10.1016/S0092-8674(02)00872-3. PubMed DOI

Huang N., Pandey A.V., Agrawal V., Reardon W., Lapunzina P.D., Mowat D., Jabs E.W., Vliet G., Van Sack J., Flück C.E., et al. Diversity and Function of Mutations in P450 Oxidoreductase in Patients with Antley-Bixler Syndrome and Disordered Steroidogenesis. Am. J. Hum. Genet. 2005;76:729–749. doi: 10.1086/429417. PubMed DOI PMC

Hart S.N., Zhong X. P450 Oxidoreductase: Genetic Polymorphisms and Implications for Drug Metabolism and Toxicity. Expert Opin. Drug Metab. Toxicol. 2008;4:439–452. doi: 10.1517/17425255.4.4.439. PubMed DOI

Arlt W., Walker E.A., Draper N., Ivison H.E., Ride J.P., Hammer F., Chalder S.M., Borucka-Mankiewicz M., Hauffa B.P., Malunowicz E.M., et al. Congenital Adrenal Hyperplasia Caused by Mutant P450 Oxidoreductase and Human Androgen Synthesis: Analytical Study. Lancet. 2004;363:2128–2135. doi: 10.1016/S0140-6736(04)16503-3. PubMed DOI

Flück C.E., Tajima T., Pandey A.V., Arlt W., Okuhara K., Verge C.F., Jabs E.W., Mendonça B.B., Fujieda K., Miller W.L. Mutant P450 Oxidoreductase Causes Disordered Steroidogenesis with and without Antley-Bixler Syndrome. Nat. Genet. 2004;36:228–230. PubMed

Waterham H., Wanders R.J. Biochemical and Genetic Aspects of 7-Dehydrocholesterol Reductase and Smith-Lemli-Opitz Syndrome. Biochim. Biophys. Acta. 2000;1529:340–356. doi: 10.1016/S1388-1981(00)00159-1. PubMed DOI

Witsch-Baumgartner M., Löffler J., Utermann G. Mutations in the Human DHCR7 Gene. Hum. Mutat. 2001;17:172–182. doi: 10.1002/humu.2. PubMed DOI

Saeed M., Andreo U., Chung H.-Y., Espiritu C., Branch A.D., Silva J.M., Rice C.M. SEC14L2 Enables Pan-Genotype HCV Replication in Cell Culture. Nature. 2015;524:471–475. doi: 10.1038/nature14899. PubMed DOI PMC

Zingg J.-M., Libinaki R., Meydani M., Azzi A. Modulation of Phosphorylation of Tocopherol and Phosphatidylinositol by hTAP1/SEC14L2-Mediated Lipid Exchange. PLoS ONE. 2014;9:e101550. doi: 10.1371/journal.pone.0101550. PubMed DOI PMC

Fechtner S., Singh A., Chourasia M., Ahmed S. Molecular Insights into the Differences in Anti-Inflammatory Activities of Green Tea Catechins on IL-1β Signaling in Rheumatoid Arthritis Synovial Fibroblasts. Toxicol. Appl. Pharmacol. 2017;329:112–120. doi: 10.1016/j.taap.2017.05.016. PubMed DOI PMC

Miao E.A., Alpuche-Aranda C.M., Dors M., Clark A.E., Bader M.W., Miller S.I., Aderem A. Cytoplasmic Flagellin Activates Caspase-1 and Secretion of Interleukin 1[beta] via Ipaf. Nat. Immunol. 2006;7:569–576. doi: 10.1038/ni1344. PubMed DOI

Ben-Sasson S.Z., Hu-Li J., Quiel J., Cauchetaux S., Ratner M., Shapira I., Dinarello C.A., Paul W.E. IL-1 Acts Directly on CD4 T Cells to Enhance Their Antigen-Driven Expansion and Differentiation. Proc. Natl. Acad. Sci. USA. 2009;106:7119–7124. doi: 10.1073/pnas.0902745106. PubMed DOI PMC

Bartelmez S.H., Bradley T.R., Bertoncello I., Mochizuki D.Y., Tushinski R.J., Stanley E.R., Hapel A.J., Young I.G., Kriegler A.B., Hodgson G.S. Interleukin 1 plus Interleukin 3 plus Colony-Stimulating Factor 1 Are Essential for Clonal Proliferation of Primitive Myeloid Bone Marrow Cells. Exp. Hematol. 1989;17:240–245. PubMed

Mangan D.F., Welch G.R., Wahl S.M. Lipopolysaccharide, Tumor Necrosis Factor-Alpha, and IL-1 Beta Prevent Programmed Cell Death (Apoptosis) in Human Peripheral Blood Monocytes. J. Immunol. 1991;146:1541–1546. PubMed

Zhu J., Guo L., Min B., Watson C.J., Hu-Li J., Young H.A., Tsichlis P.N., Paul W.E. Growth Factor Independent-1 Induced by IL-4 Regulates Th2 Cell Proliferation. Immunity. 2002;16:733–744. doi: 10.1016/S1074-7613(02)00317-5. PubMed DOI

Hock H., Hamblen M.J., Rooke H.M., Schindler J.W., Saleque S., Fujiwara Y., Orkin S.H. Gfi-1 Restricts Proliferation and Preserves Functional Integrity of Haematopoietic Stem Cells. Nature. 2004;431:1002–1007. doi: 10.1038/nature02994. PubMed DOI

Person R.E., Li F.-Q., Duan Z., Benson K.F., Wechsler J., Papadaki H.A., Eliopoulos G., Kaufman C., Bertolone S.J., Nakamoto B., et al. Mutations in Proto-Oncogene GFI1 Cause Human Neutropenia and Target ELA2. Nat. Genet. 2003;34:308–312. doi: 10.1038/ng1170. PubMed DOI PMC

Wang D., Stravopodis D., Teglund S., Kitazawa J., Ihle J.N. Naturally Occurring Dominant Negative Variants of Stat5. Mol. Cell. Biol. 1996;16:6141–6148. doi: 10.1128/MCB.16.11.6141. PubMed DOI PMC

Ambrosioa R., Fimiania G., Monfregolaa J., Sanzaria E., Felicea N., De Salernob M.C., Pignatab C., D’Ursoa M., Valeria Ursini M. The Structure of Human STAT5A and B Genes Reveals Two Regions of Nearly Identical Sequence and an Alternative Tissue Specific STAT5B Promoter. Gene. 2002;285:311–318. doi: 10.1016/S0378-1119(02)00421-3. PubMed DOI

Lin J.X., Mietz J., Modi W.S., John S., Leonard W.J. Cloning of Human Stat5B. Reconstitution of Interleukin-2-Induced Stat5A and Stat5B DNA Binding Activity in COS-7 Cells. J. Biol. Chem. 1996;271:10738–10744. doi: 10.1074/jbc.271.18.10738. PubMed DOI

Miyoshi K., Shillingford J.M., Smith G.H., Grimm S.L., Wagner K.U., Oka T., Rosen J.M., Robinson G.W., Hennighausen L. Signal Transducer and Activator of Transcription (Stat) 5 Controls the Proliferation and Differentiation of Mammary Alveolar Epithelium. J. Cell Biol. 2001;155:531–542. doi: 10.1083/jcb.200107065. PubMed DOI PMC

Chomczynski P., Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Huang D.W., Sherman B.T., Tan Q., Kir J., Liu D., Bryant D., Guo Y., Stephens R., Baseler M.W., Lane H.C., et al. DAVID Bioinformatics Resources: Expanded Annotation Database and Novel Algorithms to Better Extract Biology from Large Gene Lists. Nucleic Acids Res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC

Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R Package for Visually Combining Expression Data with Functional Analysis: Figure 1. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

Human Ovarian Granulosa Cells Isolated during an IVF Procedure Exhibit Differential Expression of Genes Regulating Cell Division and Mitotic Spindle Formation

. 2019 Nov 20 ; 8 (12) : . [epub] 20191120

Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach

. 2019 Nov ; 20 (5) : 4403-4414. [epub] 20190926

New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture-Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles

. 2019 Aug 15 ; 20 (16) : . [epub] 20190815

'Heart development and morphogenesis' is a novel pathway for human ovarian granulosa cell differentiation during long‑term in vitro cultivation‑a microarray approach

. 2019 Mar ; 19 (3) : 1705-1715. [epub] 20190108

Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture

. 2019 Feb ; 151 (2) : 125-143. [epub] 20181031

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...