Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach

. 2019 Nov ; 20 (5) : 4403-4414. [epub] 20190926

Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31702034

Under physiological conditions, human ovarian granulosa cells (GCs), are responsible for a number of processes associated with folliculogenesis and oogenesis. The primary functions of GCs in the individual phases of follicle growth are: Hormone production in response to follicle stimulating hormone (FSH), induction of ovarian follicle atresia through specific molecular markers and production of nexus cellular connections for communication with the oocyte. In recent years, interest in obtaining stem cells from particular tissues, including the ovary, has increased. Special attention has been paid to the novel properties of GCs during long‑term in vitro culture. It has been demonstrated that the usually recycled material in the form of follicular fluid can be a source of cells with stem‑like properties. The study group consisted of patients enrolled in the in vitro fertilization procedure. Total RNA was isolated from GCs at 4 time points (after 1, 7, 15 and 30 days of culture) and was used for microarray expression analysis (Affymetrix® Human HgU 219 Array). The expression of 22,480 transcripts was examined. The selection of significantly altered genes was based on a P‑value <0.05 and expression higher than two‑fold. The leucine rich repeat containing 17, collagen type I α1 chain, bone morphogenetic protein 4, twist family bHLH transcription factor 1, insulin like growth factor binding protein 5, GLI family zinc finger 2 and collagen triple helix repeat containing genes exhibited the highest changes in expression. Reverse‑transcription‑quantitative PCR was performed to validate the results obtained in the analysis of expression microarrays. The direction of expression changes was validated in the majority of cases. The presented results indicated that GCs have the potential of cells that can differentiate towards osteoblasts in long‑term in vitro culture conditions. Increased expression of genes associated with the osteogenesis process suggests a potential for uninduced change of GC properties towards the osteoblast phenotype. The present study, therefore, suggests that GCs may become an excellent starting material in obtaining stable osteoblast cultures. GCs differentiated towards osteoblasts may be used in regenerative and reconstructive medicine in the future.

Erratum v

PubMed

Zobrazit více v PubMed

Zhang H, Vollmer M, De Geyter M, Litzistorf Y, Ladewig A, Dürrenberger M, Guggenheim R, Miny P, Holzgreve W, De Geyter C. Characterization of an immortalized human granulosa cell line (COV434) Mol Hum Reprod. 2000;6:146–153. doi: 10.1093/molehr/6.2.146. PubMed DOI

Brůcková L, Soukup T, Moos J, Moosová M, Pavelková J, Rezábek K, Vísek B, Mokrý J. The cultivation of human granulosa cells. Acta Medica (Hradec Kralove) 2008;51:165–172. doi: 10.14712/18059694.2017.19. PubMed DOI

Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B, Jaśkowski JM. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med J Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI

Kranc W, Jankowski M, Budna J, Celichowski P, Khozmi R, Bryja A, Borys S, Dyszkiewicz-Konwińska M, Jeseta M, Magas M, et al. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro-signaling pathway activation approach. Med J Cell Biol. 2018;6:18–26. doi: 10.2478/acb-2018-0004. DOI

Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B, Jaśkowski JM. Cytoplasmic and nuclear maturation of oocytes in mammals-living in the shadow of cells developmental capability. Med J Cell Biol. 2018;1:13–17. doi: 10.2478/acb-2018-0003. DOI

Kempisty B, Ziółkowska A, Piotrowska H, Ciesiółka S, Antosik P, Bukowska D, Zawierucha P, Woźna M, Jaśkowski JM, Brüssow KP, et al. Short-term cultivation of porcine cumulus cells influences the cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) protein expression-a real-time cell proliferation approach. J Reprod Dev. 2013;59:339–345. doi: 10.1262/jrd.2012-162. PubMed DOI PMC

Ciesiółka S, Budna J, Jopek K, Bryja A, Kranc W, Chachuła A, Borys S, Dyszkiewicz Konwińska M, Ziółkowska A, Antosik P, et al. Influence of estradiol-17beta on progesterone and estrogen receptor mRNA expression in porcine follicular granulosa cells during short-term, in vitro real-time cell proliferation. Biomed Res Int. 2016;2016:8431018. doi: 10.1155/2016/8431018. PubMed DOI PMC

Spanel-Borowski K, Sterzik K. Ultrastructure of human preovulatory granulosa cells in follicular fluid aspirates. Arch Gynecol. 1987;240:137–146. doi: 10.1007/BF00207708. PubMed DOI

Neubourg DD, Robins A, Fishel S, Gibbon L. Flow cytometric analysis of granulosa cells from follicular fluid after follicular stimulation. Hum Reprod. 1996;11:2211–2214. doi: 10.1093/oxfordjournals.humrep.a019078. PubMed DOI

Ratajczak MZ, Suszyńska M. Quo vadis regenerative medicine? Acta Haematol Pol. 2013;44:161–170. doi: 10.1016/j.achaem.2013.07.023. PubMed DOI PMC

Weiss DJ. Concise review: Current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32:16–25. doi: 10.1002/stem.1506. PubMed DOI PMC

Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507:190–194. doi: 10.1038/nature12930. PubMed DOI PMC

Matthews VB, Yeoh GC. Liver stem cells. IUBMB Life. 2005;57:549–553. doi: 10.1080/15216540500215606. PubMed DOI

Murtaugh LC, Kopinke D. StemBook [Internet] Harvard Stem Cell Institute; Cambridge, MA: 2008. Pancreatic Stem Cells. PubMed DOI

Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14:311–324. doi: 10.1159/000080341. PubMed DOI

Pereira LO, Rubini MR, Silva JR, Oliveira DM, Silva ICR, Poças-Fonseca MJ, Azevedo RB. Comparison of stem cell properties of cells isolated from normal and inflamed dental pulps. Int Endod J. 2012;45:1080–1090. doi: 10.1111/j.1365-2591.2012.02068.x. PubMed DOI

Karahuseyinoglu S, Kocaefe C, Balci D, Erdemli E, Can A. Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells. 2008;26:682–691. doi: 10.1634/stemcells.2007-0738. PubMed DOI

Malekshah AK, Moghaddam AE, Daraka SM. Comparison of conditioned medium and direct co-culture of human granulosa cells on mouse embryo development. Indian J Exp Biol. 2006;44:189–192. PubMed

Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342. PubMed DOI

Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, Brigham KL. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33:145–152. doi: 10.1165/rcmb.2004-0330OC. PubMed DOI PMC

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI

Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev Rev. 2014;10:633–642. doi: 10.1007/s12015-014-9521-4. PubMed DOI

Aghadavod E, Zarghami N, Farzadi L, Zare M, Barzegari A, Movassaghpour AA, Nouri M. Isolation of granulosa cells from follicular fluid; applications in biomedical and molecular biology experiments. Adv Biomed Res. 2015;4:250. doi: 10.4103/2277-9175.170675. PubMed DOI PMC

Kranc W, Brązert M, Budna J, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M Chermuła B, Dyszkiewicz-Konwińska M, et al. Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol. 2019;151:125–143. doi: 10.1007/s00418-018-1750-1. PubMed DOI PMC

Kranc W, Brązert M, Ożegowska K, Nawrocki MJ, Budna J, Celichowski P, Dyszkiewicz-Konwińska M, Jankowski M, Jeseta M, Pawelczyk L, et al. Expression profile of genes regulating steroid biosynthesis and metabolism in human ovarian granulosa cells-A primary culture approach. Int J Mol Sci. 2017;18(pii):E2673. doi: 10.3390/ijms18122673. PubMed DOI PMC

Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L, ESHRE working group on Poor Ovarian Response Definition ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum Reprod. 2011;26:1616–1624. doi: 10.1093/humrep/der092. PubMed DOI

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Kranc W, Brązert M, Ożegowska K, Budna-Tukan J, Celichowski P, Jankowski M, Bryja A, Nawrocki MJ, Popis M, Jeseta M, Pawelczyk L. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med J Cell Biol. 2018;6:91–100. doi: 10.2478/acb-2018-0015. DOI

Bryja A, Dyszkiewicz-Konwińska M, Jankowski M, Celichowski P, Stefańska K, Chamier-Gliszczyńska A, Popis M, Mehr K, Bukowska D, Antosik P, et al. Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro-a microarray approach. Med J Cell Biol. 2018;6:75–82. doi: 10.2478/acb-2018-0014. DOI

Chamier-Gliszczyńska A, Brązert M, Sujka-Kordowska P, Popis M, Ożegowska K, Stefańska K, Kocherova I, Celichowski P, Kulus M, Bukowska D, et al. Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture-a transcriptomic study. Med J Cell Biol. 2018;6:163–173. doi: 10.2478/acb-2018-0026. DOI

Stefańska K, Chamier-Gliszczyńska A, Jankowski M, Celichowski P, Kulus M, Rojewska M, Antosik P, Bukowska D, Bruska M, Nowicki M, et al. Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture - a microarray assays. Med J Cell Biol. 2018;6:195–204. doi: 10.2478/acb-2018-0030. DOI

Nawrocki MJ, Celichowski P, Jankowski M, Kranc W, Bryja A, Borys-Wójcik S, Jeseta M, Antosik P, Bukowska D, Brusk M, et al. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation-a primary cell culture approach. Med J Cell Biol. 2018;6:186–194. doi: 10.2478/acb-2018-0029. DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35((Web Server Issue)):W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC

Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-b/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005. doi: 10.1038/boneres.2015.5. PubMed DOI PMC

Zuo C, Huang Y, Bajis R, Sahih M, Li YP, Dai K, Zhang X. Osteoblastogenesis regulation signals in bone remodeling. Osteoporos Int. 2012;23:1653–1663. doi: 10.1007/s00198-012-1909-x. PubMed DOI

Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, Zhang Z, Martin JF, Behringer RR, Nakamura T, de Crombrugghe B. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA. 2005;102:14665–14670. doi: 10.1073/pnas.0504750102. PubMed DOI PMC

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 2005;102:3324–3329. doi: 10.1073/pnas.0408742102. PubMed DOI PMC

Cao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X, Jia SF, Kleinerman ES. Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res. 2005;65:1124–1128. doi: 10.1158/0008-5472.CAN-04-2128. PubMed DOI

Sánchez-Duffhues G, Hiepen C, Knaus P, ten Dijke P. Bone morphogenetic protein signaling in bone homeostasis. Bone. 2015;80:43–59. doi: 10.1016/j.bone.2015.05.025. PubMed DOI

Yuasa M, Yamada T, Taniyama T, Masaoka T, Xuetao W, Yoshii T, Horie M, Yasuda H, Uemura T, Okawa A, Sotome S. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS One. 2015;10:e0116462. doi: 10.1371/journal.pone.0116462. PubMed DOI PMC

Włodarski KH, Galus R, Brodzikowska A, Włodarski PK. Sclerostin, an osteocytes-derived bone-forming inhibitor. Pol Orthop Traumatol. 2013;78:151–154. PubMed

Włodarski K, Włodarski P. Leptin as a modulator of osteogenesis. Ortop Traumatol Rehabil. 2009;11:1–6. PubMed

Kossowska-Tomaszczuk K, De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013;2013:310859. doi: 10.1155/2013/310859. PubMed DOI PMC

Kossowska-Tomaszczuk K, Pelczar P, Güven S, Kowalski J, Volpi E, De Geyter C, Scherberich A. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 2010;16:2063–2073. doi: 10.1089/ten.tea.2009.0684. PubMed DOI

Chamberlain G, Fox J, Ashton B, Middleton J. Concise Review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–2749. doi: 10.1634/stemcells.2007-0197. PubMed DOI

Kim T, Kim K, Lee SH, So HS, Lee J, Kim N, Choi Y. Identification of LRRc17 as a negative regulator of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. J Biol Chem. 2009;284:15308–15316. doi: 10.1074/jbc.M807722200. PubMed DOI PMC

Coveney C, Boocock DJ, Rees RC, Deen S, Ball GR. Data mining of gene arrays for biomarkers of survival in ovarian cancer. Microarrays (Basel) 2015;4:324–338. doi: 10.3390/microarrays4030324. PubMed DOI PMC

Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214. doi: 10.1007/s00198-009-1066-z. PubMed DOI

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Harland ML, Morris SE, Rodgers RJ. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics. 2014;15:40. doi: 10.1186/1471-2164-15-24. PubMed DOI PMC

Zhao Y, Luck MR. Gene expression and protein distribution of collagen, fibronectin and laminin in bovine follicles and corpora lutea. J Reprod Fertil. 1995;104:115–123. doi: 10.1530/jrf.0.1040115. PubMed DOI

Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI, Reddi AH. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem. 1989;264:13377–13380. PubMed

Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2006;2:e216. doi: 10.1371/journal.pgen.0020216. PubMed DOI PMC

Bayne RA, Donnachie DJ, Kinnell HL, Childs AJ, Anderson RA. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2. Mol Hum Reprod. 2016;22:622–633. doi: 10.1093/molehr/gaw044. PubMed DOI PMC

Chang SF, Chang TK, Peng HH, Yeh YT, Lee DY, Yeh CR, Zhou J, Cheng CK, Chang CA, Chiu JJ. BMP-4 induction of arrest and differentiation of osteoblast-like cells via p21 CIP1 and p27 KIP1 regulation. Mol Endocrinol. 2009;23:1827–1838. doi: 10.1210/me.2009-0143. PubMed DOI PMC

Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S, Kawabata M, Kato M, Ichijo H, Miyazono K. Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell. 1999;10:3801–3813. doi: 10.1091/mbc.10.11.3801. PubMed DOI PMC

Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000;21:393–411. doi: 10.1210/edrv.21.4.0403. PubMed DOI

Tanwar PS, Mcfarlane JR. Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice. Reproduction. 2011;142:573–579. doi: 10.1530/REP-10-0299. PubMed DOI

Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: Actions of BMP-4, −6 and −7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction. 2004;127:239–254. doi: 10.1530/rep.1.00090. PubMed DOI

Dooley CA, Attia GR, Rainey WE, Moore DR, Carr BR. Bone morphogenetic protein inhibits ovarian androgen production. J Clin Endocrinol Metab. 2000;85:3331–3337. doi: 10.1210/jcem.85.9.6835. PubMed DOI

Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003;278:304–310. doi: 10.1074/jbc.M207362200. PubMed DOI

Harvey NT, Hughes JN, Lonic A, Yap C, Long C, Rathjen PD, Rathjen J. Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci. 2010;123:1796–1804. doi: 10.1242/jcs.047530. PubMed DOI

Kim JH, Skates SJ, Uede T, Wong KK, Schorge JO, Feltmate CM, Berkowitz RS, Cramer DW, Mok SC. Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA. 2002;287:1671–1679. doi: 10.1001/jama.287.13.1671. PubMed DOI

Skinner MK, Schmidt M, Savenkova MI, Sadler-Riggleman I, Nilsson EE. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev. 2008;75:1457–1472. doi: 10.1002/mrd.20883. PubMed DOI PMC

Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C, Scheideler M, Windhager R, Preisegger KH, Trajanoski Z. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics. 2007;8:70. doi: 10.1186/1471-2164-8-70. PubMed DOI PMC

Bilousova G, Jun DH, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells. 2011;29:206–216. doi: 10.1002/stem.566. PubMed DOI PMC

Zhao M, Qiao M, Harris SE, Chen D, Oyajobi BO, Mundy GR. The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol. 2006;26:6197–6208. doi: 10.1128/MCB.02214-05. PubMed DOI PMC

Thrailkill KM, Quarles LD, Nagase H, Suzuki K, Serra DM, Fowlkes JL. Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation. Endocrinology. 1995;136:3527–3533. doi: 10.1210/endo.136.8.7543045. PubMed DOI

Peruzzi B, Cappariello A, Del Fattore A, Rucci N, De Benedetti F, Teti A. c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nat Commun. 2012;3:630. doi: 10.1038/ncomms1651. PubMed DOI

Liu XJ, Ling N. Regulation of IGFBP-4 and −5 expression in rat granulosa cells. Adv Exp Med Biol. 1994;343:367–376. doi: 10.1007/978-1-4615-2988-0_34. PubMed DOI

Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, et al. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004;6:423–435. doi: 10.1016/S1534-5807(04)00058-9. PubMed DOI

Wang C, Gu W, Sun B, Zhang Y, Ji Y, Xu X, Wen Y. CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ. J Mol Histol. 2017;48:311–319. doi: 10.1007/s10735-017-9729-0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...