Muscle Cell Morphogenesis, Structure, Development and Differentiation Processes Are Significantly Regulated during Human Ovarian Granulosa Cells In Vitro Cultivation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UMO-2018/31/B/NZ5/02475
Narodowe Centrum Nauki
PubMed
32604796
PubMed Central
PMC7355984
DOI
10.3390/jcm9062006
PII: jcm9062006
Knihovny.cz E-zdroje
- Klíčová slova
- human GCs, in vitro culture, muscle differentiation, proliferation,
- Publikační typ
- časopisecké články MeSH
Granulosa cells (GCs) have many functions and are fundamental for both folliculogenesis and oogenesis, releasing hormones and communicating directly with the oocyte. Long-term in vitro cultures of GCs show significant stem-like characteristics. In the current study, RNA of human ovarian granulosa cells was collected at 1, 7, 15 and 30 days of long-term in vitro culture. Understanding the process of differentiation of GCs towards different cell lineages, as well as the molecular pathways underlying these mechanisms, is fundamental to revealing other possible stemness markers of this type of cell. Identifying new markers of GC plasticity may help to understand the aetiology and recurrence of a wide variety of diseases and health conditions and reveal possible clinical applications of the ovarian tissue cells, affecting not only the reproductive ability but also sex hormone production. Granulosa cells were the subject of this study, as they are readily available as remnant material leftover after in vitro fertilisation procedures and exhibit significant stem-like characteristics in culture. The change in gene expression was investigated through a range of molecular and bioinformatic analyses. Expression microarrays were used, allowing the identification of groups of genes typical of specific cellular pathways. This candidate gene study focused on ontological groups associated with muscle cell morphogenesis, structure, development and differentiation, namely, "muscle cell development", "muscle cell differentiation", "muscle contraction", "muscle organ development", "muscle organ morphogenesis", "muscle structure development", "muscle system process" and "muscle tissue development". The results showed that the 10 most upregulated genes were keratin 19, oxytocin receptor, connective tissue growth factor, nexilin, myosin light chain kinase, cysteine and glycine-rich protein 3, caveolin 1, actin, activating transcription factor 3 and tropomyosin, while the 10 most downregulated consisted of epiregulin, prostaglandin-endoperoxide synthase 2, transforming growth factor, interleukin, collagen, 5-hydroxytryptmine, interleukin 4, phosphodiesterase, wingless-type MMTV integration site family and SRY-box 9. Moreover, ultrastructural observations showing heterogeneity of granulosa cell population are presented in the study. At least two morphologically different subpopulations were identified: large, light coloured and small, darker cells. The expression of genes belonging to the mentioned ontological groups suggest the potential ability of GCs to differentiate and proliferate toward muscle lineage, showing possible application in muscle regeneration and the treatment of different diseases.
Department of Anatomy Poznan University of Medical Sciences 6 Święcickiego St 60 781 Poznan Poland
Department of Toxicology Poznan University of Medical Sciences 30 Dojazd St 60 631 Poznań Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27695 USA
The School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen AB25 2ZD UK
Zobrazit více v PubMed
Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI
Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D. Cytoplasmic and nuclear maturation of oocytes in mammals—Living in the shadow of cells developmental capability. Med. J. Cell Biol. 2018;1:13–17. doi: 10.2478/acb-2018-0003. DOI
Žáková J., Crha I., Jelínková L., Mardešic T., Pastor Z., Trávník P., Kempisty B., Ventruba P., Ješeta M. Current topics in assisted reproduction in the Czech Republic. Med. J. Cell Biol. 2018;6:61–65. doi: 10.2478/acb-2018-0011. DOI
Rolf H.J., Kierdorf U., Kierdorf H., Schulz J., Seymour N., Schliephake H., Napp J., Niebert S., Wölfel H., Wiese K.G. Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler. PLoS ONE. 2008;3:e2064. doi: 10.1371/journal.pone.0002064. PubMed DOI PMC
Mora J.M., Fenwick M.A., Castle L., Baithun M., Ryder T.A., Mobberley M., Carzaniga R., Franks S., Hardy K. Characterization and Significance of Adhesion and Junction-Related Proteins in Mouse Ovarian Follicles1. Biol. Reprod. 2012;86:153, 1–14. doi: 10.1095/biolreprod.111.096156. PubMed DOI
Saeed-Zidane M., Linden L., Salilew-Wondim D., Held E., Neuhoff C., Tholen E., Hoelker M., Schellander K., Tesfaye D. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLoS ONE. 2017;12:e0187569. doi: 10.1371/journal.pone.0187569. PubMed DOI PMC
Khamsi F., Roberge S. Granulosa cells of the cumulus oophorus are different from mural granulosa cells in their response to gonadotrophins and IGF-I. J. Endocrinol. 2001;170:565–573. doi: 10.1677/joe.0.1700565. PubMed DOI
Kossowska-Tomaszczuk K., De Geyter C., De Geyter M., Martin I., Holzgreve W., Scherberich A., Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI
Rojewska M., Popis M., Jankowski M., Bukowska D., Antosik P., Kempisty B. Stemness specificity of epithelial cells—Application of cell and tissue technology in regenerative medicine. Med. J. Cell Biol. 2018;6:114–119. doi: 10.2478/acb-2018-0018. DOI
Kranc W., Brązert M., Celichowski P., Bryja A., Nawrocki M.J., Ożegowska K., Jankowski M., Jeseta M., Pawelczyk L., Bręborowicz A., et al. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol. Med. Rep. 2019;19:1705–1715. doi: 10.3892/mmr.2019.9837. PubMed DOI PMC
Brevini T.A.L., Pennarossa G., Rahman M.M., Paffoni A., Antonini S., Ragni G., deEguileor M., Tettamanti G., Gandolfi F. Morphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and Addressed Toward Muscular Differentiation. Stem Cell Rev. Rep. 2014;10:633–642. doi: 10.1007/s12015-014-9521-4. PubMed DOI
Bruckova L., Soukup T., Visek B., Moos J., Moosova M., Pavelkova J., Rezabek K., Kucerova L., Micuda S., Brcakova E., et al. Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid. J. Assist. Reprod. Genet. 2011;28:939–950. doi: 10.1007/s10815-011-9617-6. PubMed DOI PMC
Ai A., Tang Z., Liu Y., Yu S., Li B., Huang H., Wang X., Cao Y., Zhang W. Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp. Ther. Med. 2019;18:2167–2177. doi: 10.3892/etm.2019.7802. PubMed DOI PMC
Brązert M., Kranc W., Celichowski P., Ożegowska K., Budna-Tukan J., Jeseta M., Pawelczyk L., Bruska M., Zabel M., Nowicki M., et al. Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach. Mol. Med. Rep. 2019;20:4403–4414. doi: 10.3892/mmr.2019.10709. PubMed DOI PMC
Chamier-Gliszczyńska A., Brązert M., Sujka-Kordowska P., Popis M., Ożegowska K., Stefańska K., Kocherova I., Celichowski P., Kulus M., Bukowska D., et al. Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture—A transcriptomic study. Med. J. Cell Biol. 2018;6:163–173. doi: 10.2478/acb-2018-0026. DOI
Budna J., Celichowski P., Bryja A., Jeseta M., Jankowski M., Bukowska D., Antosik P., Nowicki A., Brüssow K.P., Bruska M., et al. Expression Changes in Fatty acid Metabolic Processrelated Genes in Porcine Oocytes During in Vitro Maturation. Med. J. Cell Biol. 2018;6:48–54. doi: 10.2478/acb-2018-0009. DOI
Kranc W., Brązert M., Ożegowska K., Budna-Tukan J., Celichowski P., Jankowski M., Bryja A., Nawrocki M.J., Popis M., Jeseta M., et al. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med. J. Cell Biol. 2018 doi: 10.2478/acb-2018-0015. DOI
Kulus M., Józkowiak M., Kulus J., Popis M., Borowiec B., Stefańska K., Celichowski P., Nawrocki M.J., Bukowska D., Brüssow K.P., et al. “Cell Cycle Process”, “Cell Division” and “Cell Proliferation” Belong To Ontology Groups Highly Regulated During Long-Term Culture of Porcine Oviductal Epithelial Cells. Med. J. Cell Biol. 2019;7:15–24. doi: 10.2478/acb-2019-0003. DOI
Stefańska K., Kocherova I., Knap S., Kulus M., Celichowski P., Jeseta M. The genes regulating maintenance of cellular protein location are differentially expressed in porcine epithelial oviductal cells during longterm in vitro cultivation. Med. J. Cell Biol. 2019;7:77–85. doi: 10.2478/acb-2019-0010. DOI
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Nawrocki M.J., Celichowski P., Jankowski M., Kranc W., Bryja A., Borys-Wójcik S., Jeseta M., Antosik P., Bukowska D., Bruska M., et al. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation—A primary cell culture approach. Med. J. Cell Biol. 2018;6:186–194. doi: 10.2478/acb-2018-0029. DOI
Bryja A., Dyszkiewicz-Konwińska M., Jankowski M., Celichowski P., Stefańska K., Chamier-Gliszczyńska A., Popis M., Mehr K., Bukowska D., Antosik P., et al. Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro-a microarray approach. Bryja al. Med. J. Cell Biol. 2018;6:75–82. doi: 10.2478/acb-2018-0013. DOI
Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI
Virant-Klun I., Zech N., Rožman P., Vogler A., Cvjetičanin B., Klemenc P., Maličev E., Meden-Vrtovec H. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76:843–856. doi: 10.1111/j.1432-0436.2008.00268.x. PubMed DOI
Virant-Klun I., Rožman P., Cvjeticanin B., Vrtacnik-Bokal E., Novakovic S., Rülicke T., Dovc P., Meden-Vrtovec H. Parthenogenetic Embryo-Like Structures in the Human Ovarian Surface Epithelium Cell Culture in Postmenopausal Women with No Naturally Present Follicles and Oocytes. Stem Cells Dev. 2009;18:137–150. doi: 10.1089/scd.2007.0238. PubMed DOI
Parte S., Bhartiya D., Telang J., Daithankar V., Salvi V., Zaveri K., Hinduja I. Detection, Characterization, and Spontaneous Differentiation In Vitro of Very Small Embryonic-Like Putative Stem Cells in Adult Mammalian Ovary. Stem Cells Dev. 2011;20:1451–1464. doi: 10.1089/scd.2010.0461. PubMed DOI PMC
Johnson J., Canning J., Kaneko T., Pru J.K., Tilly J.L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–150. doi: 10.1038/nature02316. PubMed DOI
Dzafic E., Stimpfel M., Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J. Assist. Reprod. Genet. 2013;30:1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC
Wagner M., Yoshihara M., Douagi I., Damdimopoulos A., Panula S., Petropoulos S., Lu H., Pettersson K., Palm K., Katayama S., et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat. Commun. 2020;11 doi: 10.1038/s41467-020-14936-3. PubMed DOI PMC
Ignatiadis M., Xenidis N., Perraki M., Apostolaki S., Politaki E., Kafousi M., Stathopoulos E.N., Stathopoulou A., Lianidou E., Chlouverakis G., et al. Different prognostic value of cytokeratin-19 mRNA-positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J. Clin. Oncol. 2007;25:5194–5202. doi: 10.1200/JCO.2007.11.7762. PubMed DOI
Bozionellou V., Mavroudis D., Perraki M., Papadopoulos S., Apostolaki S., Stathopoulos E., Stathopoulou A., Lianidou E., Georgoulias V. Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNA-positive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. Clin. Cancer Res. 2004;10:8185–8194. doi: 10.1158/1078-0432.CCR-03-0094. PubMed DOI
Bártek J., Bártková J., Taylor-Papadimitriou J., Rejthar A., Kovařík J., Lukáš Z., Vojtěšek B. Differential expression of keratin 19 in normal human epithelial tissues revealed by monospecific monoclonal antibodies. Histochem. J. 1986;18:565–575. doi: 10.1007/BF01675198. PubMed DOI
Kawai T., Yasuchika K., Ishii T., Katayama H., Yoshitoshi E.Y., Ogiso S., Kita S., Yasuda K., Fukumitsu K., Mizumoto M., et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin. Cancer Res. 2015;21:3081–3091. doi: 10.1158/1078-0432.CCR-14-1936. PubMed DOI
Coulombe P.A., Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat. Cell Biol. 2004;6:699–706. doi: 10.1038/ncb0804-699. PubMed DOI
Sanborn B.M., Dodge K., Monga M., Qian A., Wang W., Yue C. Molecular mechanisms regulating the effects of oxytocin on myometrialintracellular calcium. Adv. Exp. Med. Biol. 1998;449:277–286. doi: 10.1007/978-1-4615-4871-3_35. PubMed DOI
Zingg H.H., Laporte S.A. The oxytocin receptor. Trends Endocrinol. Metab. 2003;14:222–227. doi: 10.1016/S1043-2760(03)00080-8. PubMed DOI
Elabd C., Cousin W., Upadhyayula P., Chen R.Y., Chooljian M.S., Li J., Kung S., Jiang K.P., Conboy I.M. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun. 2014;5:4082. doi: 10.1038/ncomms5082. PubMed DOI PMC
Moussad E.E.D.A., Brigstock D.R. Connective tissue growth factor: What’s in a name? Mol. Genet. Metab. 2000;71:276–292. doi: 10.1006/mgme.2000.3059. PubMed DOI
Hishikawa K., Nakaki T., Fujii T. Connective tissue growth factor induces apoptosis via caspase 3 in cultured human aortic smooth muscle cells. Eur. J. Pharmacol. 2000;392:19–22. doi: 10.1016/S0014-2999(00)00115-1. PubMed DOI
Gao R., Ball D.A.K., Perbal B., Brigstock D.R. Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells. J. Hepatol. 2004;40:431–438. doi: 10.1016/j.jhep.2003.11.012. PubMed DOI
Shimo T., Nakanishi T., Nishida T., Asano M., Kanyama M., Kuboki T., Tamatani T., Tezuka K., Takemura M., Matsumura T., et al. Connective Tissue Growth Factor Induces the Proliferation, Migration, and Tube Formation of Vascular Endothelial Cells In Vitro, and Angiogenesis In Vivo. J. Biochem. 1999;126:137–145. doi: 10.1093/oxfordjournals.jbchem.a022414. PubMed DOI
Sun G., Haginoya K., Wu Y., Chiba Y., Nakanishi T., Onuma A., Sato Y., Takigawa M., Iinuma K., Tsuchiya S. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy. J. Neurol. Sci. 2008;267:48–56. doi: 10.1016/j.jns.2007.09.043. PubMed DOI
Hishikawa K., Oemar B.S., Tanner F.C., Nakaki T., Fujii T., Lüscher T.F. Overexpression of connective tissue growth factor gene induces apoptosis in human aortic smooth muscle cells. Circulation. 1999;100:2108–2112. doi: 10.1161/01.CIR.100.20.2108. PubMed DOI
Fan W.H., Pech M., Karnovsky M.J. Connective tissue growth factor (CTGF) stimulates vascular smooth muscle cell growth and migration in vitro. Eur. J. Cell Biol. 2000;79:915–923. doi: 10.1078/0171-9335-00122. PubMed DOI
Hassel D., Dahme T., Erdmann J., Meder B., Huge A., Stoll M., Just S., Hess A., Ehlermann P., Weichenhan D., et al. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nat. Med. 2009;15:1281–1288. doi: 10.1038/nm.2037. PubMed DOI
Ohtsuka T., Nakanishi H., Ikeda W., Satoh A., Momose Y., Nishioka H., Takai Y. Nexilin: A novel actin filament-binding protein localized at cell- matrix adherens junction. J. Cell Biol. 1998;143:1227–1238. doi: 10.1083/jcb.143.5.1227. PubMed DOI PMC
Lee A., Hakuno F., Northcott P., Pessin J.E., Adcock M.R. Nexilin, a Cardiomyopathy-Associated F-Actin Binding Protein, Binds and Regulates IRS1 Signaling in Skeletal Muscle Cells. PLoS ONE. 2013;8:e55634. doi: 10.1371/journal.pone.0055634. PubMed DOI PMC
Arber S., Halder G., Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell. 1994;79:221–231. doi: 10.1016/0092-8674(94)90192-9. PubMed DOI
Vafiadaki E., Arvanitis D.A., Papalouka V., Terzis G., Roumeliotis T.I., Spengos K., Garbis S.D., Manta P., Kranias E.G., Sanoudou D. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation. FEBS J. 2014;281:3261–3279. doi: 10.1111/febs.12859. PubMed DOI PMC
Geeves M.A. Comprehensive Biophysics. Elsevier; Amsterdam, The Netherlands: 2012. 4.13 Thin Filament Regulation; pp. 251–267.
Lehrer S.S., Geeves M.A. The myosin-activated thin filament regulatory state, M-open: A link to hypertrophic cardiomyopathy (HCM) J. Muscle Res. Cell Motil. 2014;35:153–160. doi: 10.1007/s10974-014-9383-z. PubMed DOI
Gordon A.M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol. Rev. 2000;80:853–924. doi: 10.1152/physrev.2000.80.2.853. PubMed DOI
Kamm K.E., Stull J.T. Dedicated Myosin Light Chain Kinases with Diverse Cellular Functions. J. Biol. Chem. 2001;276:4527–4530. doi: 10.1074/jbc.R000028200. PubMed DOI
Khromov A.S., Wang H., Choudhury N., McDuffie M., Herring B.P., Nakamoto R., Owens G.K., Somlyo A.P., Somlyo A.V. Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc. Natl. Acad. Sci. USA. 2006;103:2440–2445. doi: 10.1073/pnas.0508566103. PubMed DOI PMC
Okamoto T., Schlegel A., Scherer P.E., Lisanti M.P. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 1998;273:5419–5422. doi: 10.1074/jbc.273.10.5419. PubMed DOI
Volonte D., Liu Y., Galbiati F. The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. FASEB J. 2005;19:237–239. doi: 10.1096/fj.04-2215fje. PubMed DOI
Taylor D.S., Cheng X., Pawlowski J.E., Wallace A.R., Ferrer P., Molloy C.J. Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced by angiotensin II, endothelin-1, and thrombin. Proc. Natl. Acad. Sci. USA. 1999;96:1633–1638. doi: 10.1073/pnas.96.4.1633. PubMed DOI PMC
Takahashi M., Hayashi K., Yoshida K., Ohkawa Y., Komurasaki T., Kitabatake A., Ogawa A., Nishida W., Yano M., Monden M., et al. Epiregulin as a major autocrine/paracrine factor released from ERK- and p38MAPK-activated vascular smooth muscle cells. Circulation. 2003;108:2524–2529. doi: 10.1161/01.CIR.0000096482.02567.8C. PubMed DOI
Sekiguchi T., Yamada K., Yazawa T., Miyamoto K. Expression of Epiregulin and Amphiregulin in the Rat Ovary. J. Mol. Endocrinol. 2004;33:281–291. PubMed
López-Casillas F., Riquelme C., Pérez-Kato Y., Veronica Ponce-Castaneda M., Osses N., Esparza-Lopez J., Gonzalez-Nunez G., Cabello-Verrugio C., Mendoza V., Troncoso V., et al. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation: Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-β. J. Biol. Chem. 2003;278:382–390. doi: 10.1074/jbc.M208520200. PubMed DOI
da Luz C.M., da Broi M.G., Donabela F.C., Paro de Paz C.C., Meola J., Navarro P.A. PTGS2 down-regulation in cumulus cells of infertile women with endometriosis. Reprod. Biomed. Online. 2017;35:379–386. doi: 10.1016/j.rbmo.2017.06.021. PubMed DOI