Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21822582
PubMed Central
PMC3220434
DOI
10.1007/s10815-011-9617-6
Knihovny.cz E-zdroje
- MeSH
- buněčné kultury MeSH
- časové faktory MeSH
- fenotyp * MeSH
- folikulární buňky cytologie MeSH
- folikulární tekutina MeSH
- karyotypizace MeSH
- kultivované buňky MeSH
- lidé MeSH
- proliferace buněk * MeSH
- průtoková cytometrie MeSH
- telomery MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: The aim of this study was to develop and optimize a strategy for long-term cultivation of luteinizing human granulosa cells (GCs). METHODS: GCs were cultivated in DMEM/F12 medium supplemented with 2% fetal calf serum. In vitro proliferation of GCs was supported by follicular fluid as well as FSH and growth factors. RESULTS: The cultured GCs were maintained for 45 days with a doubling time of 159 ± 24 h. GCs initiated by the addition of follicular fluid and cultivated under low serum conditions reached 10 ± 0.7 population doublings. GCs maintain the typical phenotypic expression and the telomere length according to specific culture conditions. CONCLUSION: Our present study has demonstrated that GCs can be maintained in vitro for at least 45 days and this cell model can be beneficial when studying hormonal regulation associated with follicular maturation and preparation of oocytes for fertilization.
Zobrazit více v PubMed
Figenschau Y, Sundsfjord JA, Yousef MI, Fuskevag OM, Sveinbjornsson B, Bertheussen K. A simplified serum-free method for preparation and cultivation of human granulosa-luteal cells. Hum Reprod. 1997;12:523–531. doi: 10.1093/humrep/12.3.523. PubMed DOI
Quinn MCJ, McGregor SB, Stanton JL, Hessian PA, Gillett WR, Gren DPL. Purification of granulosa cells from human ovarian follicular fluid using granulosa cell aggregates. Reprod Fertil Dev. 2006;18:501–508. doi: 10.1071/RD05051. PubMed DOI
Lavranos TC, Mathis JM, Latham SE, Kalionis B, Shay JW, Rodgers RJ. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 1999;61:358–366. doi: 10.1095/biolreprod61.2.358. PubMed DOI
Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17:121–155. PubMed
Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and the life span of the corpus luteum. Physiol Rev. 2000;80:1–24. PubMed
Wen X, Li D, Tozer AJ, Docherty SM, Iles RK. Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles. Reprod Biol Endocrinol. 2010;8:117–127. doi: 10.1186/1477-7827-8-117. PubMed DOI PMC
Gómez E, Tarín JJ, Pellicer A. Oocytes maturation in humans: the role of gonadotrophins and growth factors. Fertil Steril. 1993;60:40–46. PubMed
Muttukrishna S, Groome N, Ledger W. Gonadotropic control of secretion of dimeric inhibins and activin A by human granulosa-luteal cells in vitro. J Assist Reprod Genet. 1997;14:566–574. doi: 10.1023/A:1022524516824. PubMed DOI PMC
Lee HC, Lee SW, Lee KW, Cha KY, Kim KH, Lee S. Identification of new proteins in follicular fluid from mature human follicles by direct sample rehydration method of two-dimensional polyacrylamide gel electrophoresis. J Korean Med Sci. 2005;20:456–460. doi: 10.3346/jkms.2005.20.3.456. PubMed DOI PMC
Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82:1021–1029. doi: 10.1095/biolreprod.109.082941. PubMed DOI
Shay JW, Wright WE. Hayflick, his limit and cellular ageing. Nat Rev Mol Cell Biol. 2000;1:72–76. doi: 10.1038/35036093. PubMed DOI
Berg-Bakker CA, Hagemeijer A, Franken EM. Establishment and characterization of 7 ovarian carcinoma cell lines and one granulosa tumor cell line: growth features and cytogenetics. Int J Cancer. 1993;53:613–620. doi: 10.1002/ijc.2910530415. PubMed DOI
Zhang H, Vollmer M, Geyter M, Litzistorf Y, Ladewig A, Dürrenberger M, Guggenheim R, Miny P, Holzgreve W, Geyter C. Characterization of an immortalized human granulosa cells cell line (COV434) Mol Hum Reprod. 2000;6:146–153. doi: 10.1093/molehr/6.2.146. PubMed DOI
Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:e47. doi: 10.1093/nar/30.10.e47. PubMed DOI PMC
Asai A, Oshima Y, Yamamoto Y, Uochi TA, Kusaka H, Akinaga S, Yamashita Y, Pongracz K, Pruzan R, Wunder E, Piatyszek M, Shihong L, Chin AC, Harley CB, Gryaznov S. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res. 2003;63:3931–3939. PubMed
Bruckova L, Soukup T, Moos J, Moosova M, Pavelkova J, Rezabek K, Visek B, Mokry J. The cultivation of human granulosa cells. Acta Medica (Hradec Kralove) 2008;51:165–172. PubMed
Sasson R, Dantes A, Tajima K, Amsterdam A. Novel genes modulated by FSH in normal and immortalized FSH responsive cells: new insights into the mechanism of FSH action. FASEB J. 2003;17:1256–1266. doi: 10.1096/fj.02-0740com. PubMed DOI
Lima-Verde IB, Matos MH, Saraiva MV, Bruno JB, Tenorio SB, Martins FS, Rossetto R, Cunha LD, Name KP, Bao SN, Campello CC, Figueiredo JR. Interaction between estradiol and follicle-stimulating hormone promotes in vitro survival and development of caprine preantral follicles. Cells Tissues Organs. 2010;191:240–247. doi: 10.1159/000231484. PubMed DOI
Parborell F, Pecci A, Gonzalez O, Vitale A, Tesone A. Effects of a gonadotropin releasing hormone agonist on rat ovarian follicle apoptosis: regulation by epidermal growth factor and the expression of Bcl-2-related genes. Biol Repro. 2002;67:481–486. doi: 10.1095/biolreprod67.2.481. PubMed DOI
Matos MH, Hurk R, Lima-Verde IB, Luque MC, Santos KD, Martins FS, Báo SN, Lucci CM, Figueiredo JR. Effects of fibroblast growth factor-2 on the in vitro culture of caprine preantral follicles. Cells Tissues Organs. 2007;186:112–120. doi: 10.1159/000103016. PubMed DOI
Adachi T, Iwashita M, Kuroshima A, Takeda Y. Regulation of IGF binding proteins by FSH in human luteinizing granulosa cells. J Assist Reprod Genet. 1995;12:639–643. doi: 10.1007/BF02212589. PubMed DOI
Wakim AN, Polizotto SL, Burholt DR. Influence of thyroxine on human granulosa cell steroidogenesis in vitro. J Assist Reprod Genet. 1995;12:274–277. doi: 10.1007/BF02212931. PubMed DOI
Lobb DK, Younglai EV. A simplified method for preparing IVF granulosa cells for culture. J Assist Reprod Genet. 2006;23:93–95. doi: 10.1007/s10815-006-9025-5. PubMed DOI PMC
Hwang DH, Kee SH, Kim K, Cheong KS, Yoo YB, Lee BL. Role of reconstituted basement membrane in human granulosa cell culture. Endocr J. 2000;47:177–183. doi: 10.1507/endocrj.47.177. PubMed DOI
Woodruff TK, Shea LD. The role of the extracellular matrix in ovarian follicle development. Reprod Sci. 2007;4:6–10. doi: 10.1177/1933719107309818. PubMed DOI PMC
Holst N, Bertheussen K, Burhol PG, Forsdahl F. Medium-associated luteinization expressed as progesterone release in granulosa-luteal cells and isolated from patients undergoing in-vitro fertilization. Hum Reprod. 1991;6:1343–1348. PubMed
Hanrieder J, Nyakas A, Naessén T, Bergquist J. Proteomic analysis of human follicular fluid using an alternative bottom-op approach. J Proteome Res. 2008;7:443–449. doi: 10.1021/pr070277z. PubMed DOI
Zachariae F. Studies on the mechanism of ovulation. Permeability of the blood-liquir barrier. Acta Endocrinol. 1958;27:339–342. PubMed
Salustri A, Camaioni A, Giacomo M, Fulop C, Hascall VC. Hyaluronan and proteoglycans in ovarian follicles. Hum Reprod. 1999;4:293–301. PubMed
Ben-Ze’ev A, Amsterdam A. Regulation of cytoskeletal proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix. Proc Natl Acad Sci U SA. 1986;83:2894–2898. doi: 10.1073/pnas.83.9.2894. PubMed DOI PMC
Asem EK, Feng S, Stingley-Salazar SR, Turek JJ, Peter AT, Robinson JP. Basal lamina of avian ovarian follicle: influence on morphology of granulose cells in-vitro. Comp Biochem Physiol Part C. 2000;125:189–201. PubMed
Kossowska-Tomaszczuk K, Geyter C, Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI
Gutiérrez CG, Glazyrin AN, Robertson GW, Campbell BK, Gong JG, Bramley TA, Webb R. Ultra-structural characteristics of bovine granulosa cells associated with maintenance of oestradiol production in vitro. Mol Cell Endocrinol. 1997;134:51–58. doi: 10.1016/S0303-7207(97)00171-8. PubMed DOI
Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18:173–179. doi: 10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3. PubMed DOI
Kyo S, Takakura M, Kohama T, Inoue M. Telomerase activity in human endometrium. Cancer Res. 1997;57:610–614. PubMed
Broccoli D, Young JW, Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA. 1995;92:9082–9086. doi: 10.1073/pnas.92.20.9082. PubMed DOI PMC
Burger AM, Bibby MC, Double JA. Telomerase activity in normal and malignant mammalian tissues: feasibility of telomerase as a target for cancer chemotherapy. Br J Cancer. 1997;75:516–522. doi: 10.1038/bjc.1997.90. PubMed DOI PMC
Harle-Bachor C, Boukamp P. Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci USA. 1996;93:6476–6481. doi: 10.1073/pnas.93.13.6476. PubMed DOI PMC
Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–352. doi: 10.1126/science.279.5349.349. PubMed DOI
Camp TA, Rahal JO, Mayo KE. Cellular localization and hormonal regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger RNAs in the rat ovary. Mol Endocrinol. 1991;5:1405–1417. doi: 10.1210/mend-5-10-1405. PubMed DOI
Lei ZM, Rao CV. Novel presence of luteinizing hormone/human chorionic gonadotropin (hCG) receptors and the downregulating action of hCG on gonadotropin releasing hormone gene expression in immortalized hypothalamic GT1–7 neurons. Mol Endocrinol. 1994;8:1111–1121. doi: 10.1210/me.8.8.1111. PubMed DOI
Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25. doi: 10.1016/0092-8674(92)90115-S. PubMed DOI
Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by a4 integrins are essential in placental and cardiac development. Development. 1995;121:549–560. PubMed