New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture-Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles

. 2019 Aug 15 ; 20 (16) : . [epub] 20190815

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31443152

Nowadays, science has a lot of knowledge about the physiology of ovarian processes, especially folliculogenesis, hormone production and ovulation. However, the molecular basis for these processes remains largely undiscovered. The cell layer surrounding the growing oocyte-granulosa cells-are characterized by high physiological capabilities (e.g., proliferation, differentiation) and potential for growth in primary cultures, which predisposes them for analysis in the context of possible application of their cultures in advanced methods of assisted reproduction. In this study, we have used standard molecular approaches to analyze markers of these processes in primarily in vitro cultured porcine granulosa, subjected to conditions usually applied to cultures of similar cells. The material for our research came from commercially slaughtered pigs. The cells were obtained by enzymatic digestion of tissues and in vitro culture in appropriate conditions. The obtained genetic material (RNA) was collected at specific time intervals (0 h-before culture; reference, 48, 98, 144 h) and then analyzed using expression microarrays. Genes that showed a fold change greater than |2| and an adjusted p value lower than 0.05 were described as differentially expressed. Three groups of genes: "Cell morphogenesis", "cell differentiation" and "cell development" were analyzed. From 265 differently expressed genes that belong to chosen ontology groups we have selected DAPL1, CXCL10, NEBL, IHH, TGFBR3, SCUBE1, DAB1, ITM2A, MCOLN3, IGF1 which are most downregulated and PDPN, CAV1, TMOD1, TAGLN, IGFBP5, ITGB3, LAMB1, FN1, ITGA2, POSTN genes whose expression is upregulated through the time of culture, on which we focused in downstream analysis. The results were also validated using RT-qPCR. The aim of our work was to conduct primary in vitro culture of granulosa cells, as well as to analyze the expression of gene groups in relation to the proliferation of follicular granulosa cells in the model of primary culture in real time. This knowledge should provide us with a molecular insight into the processes occurring during the in vitro cultures of porcine granulosa cells, serving as a basic molecular entry on the extent of the loss of their physiological properties, as well as gain of new, culture-specific traits.

Zobrazit více v PubMed

Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI

Hunter M.G. Oocyte maturation and ovum quality in pigs. Rev. Reprod. 2000;5:122–130. doi: 10.1530/ror.0.0050122. PubMed DOI

Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Cytoplasmic and nuclear maturation of oocytes in mammals—Living in the shadow of cells developmental capability. Med. J. Cell Biol. 2018;6:13–17. doi: 10.2478/acb-2018-0003. DOI

Knight P.G., Glister C. TGF-β superfamily members and ovarian follicle development. Reproduction. 2006;132:191–206. doi: 10.1530/rep.1.01074. PubMed DOI

Kempisty B., Ziółkowska A., Piotrowska H., Zawierucha P., Antosik P., Bukowska D., Ciesiółka S., Jaśkowski J.M., Brüssow K.P., Nowicki M., et al. Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43. Theriogenology. 2013;80:411–420. doi: 10.1016/j.theriogenology.2013.05.016. PubMed DOI

Kranc W., Brązert M., Ożegowska K., Nawrocki M.M.J., Budna J., Celichowski P., Dyszkiewicz-Konwińska M., Jankowski M., Jeseta M., Pawelczyk L., et al. Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells—A Primary Culture Approach. Int. J. Mol. Sci. 2017;18:2673. doi: 10.3390/ijms18122673. PubMed DOI PMC

von Mering C., Jensen L.J., Snel B., Hooper S.D., Krupp M., Foglierini M., Jouffre N., Huynen M.A., Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2004;33:D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC

Ciesiółka S., Budna J., Jopek K., Bryja A., Kranc W., Chachuła A., Borys S., Dyszkiewicz Konwińska M., Ziółkowska A., Antosik P., et al. Influence of Estradiol-17beta on Progesterone and Estrogen Receptor mRNA Expression in Porcine Follicular Granulosa Cells during Short-Term, in Vitro Real-Time Cell Proliferation. Biomed Res. Int. 2016;2016:1–8. doi: 10.1155/2016/8431018. PubMed DOI PMC

Kranc W., Budna J., Kahan R., Chachuła A., Bryja A., Ciesiółka S., Borys S., Antosik M.P., Bukowska D., Brussow K.P., et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J. Biol. Regul. Homeost. Agents. 2017;31:1–8. PubMed

Kranc W., Chachuła A., Wojtanowicz-Markiewicz K., Ociepa E., Bukowska D., Borys S., Piotrowska H., Bryja A., Antosik P., Klaus P., et al. The Insight into Developmental Capacity of Mammalian Cocs and Cumulus-Granulosa Cells-Recent Studies and Perspectives. Austin J. Invit. Fertil. 2015;2:1023–1027.

Fraser H.M., Wulff C. Angiogenesis in the corpus luteum. Reprod. Biol. Endocrinol. 2003;1:88. doi: 10.1186/1477-7827-1-88. PubMed DOI PMC

Kranc W., Chachuła A., Bryja A., Ciesiółka S., Budna J., Wojtanowicz-Markiewicz K., Sumelka E., Borys S., Antosik P., Bukowska D., et al. Selected molecular and physiological aspects of mammalian ovarian granulosa cells in primary culture. Med. Weter. 2016;72:723–727. doi: 10.21521/mw.5606. DOI

Kranc W., Brązert M., Budna J., Celichowski P., Bryja A., Nawrocki M.J., Ożegowska K., Jankowski M., Chermuła B., Dyszkiewicz-Konwińska M., et al. Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem. Cell Biol. 2018 doi: 10.1007/s00418-018-1750-1. PubMed DOI PMC

Kossowska-Tomaszczuk K., De Geyter C., De Geyter M., Martin I., Holzgreve W., Scherberich A., Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI

Salilew-Wondim D., Ibrahim S., Gebremedhn S., Tesfaye D., Heppelmann M., Bollwein H., Pfarrer C., Tholen E., Neuhoff C., Schellander K., et al. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genomics. 2016;17:218. doi: 10.1186/s12864-016-2513-9. PubMed DOI PMC

Liu G.Y., Xiong Y.Z. Isolation, sequence analysis and expression profile of a novel porcine gene, CXCL10, differentially expressed in the Longissimus dorsi muscle tissues from Meishan, Meishan × Large White cross and Large White pigs. DNA Seq. 2007;18:415–422. doi: 10.1080/10425170701243328. PubMed DOI

Hernandez D.A., Bennett C.M., Dunina-Barkovskaya L., Wedig T., Capetanaki Y., Herrmann H., Conover G.M. Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Mol. Biol. Cell. 2016;27:3869–3882. doi: 10.1091/mbc.E16-04-0237. PubMed DOI PMC

Komori T. Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2. Int. J. Mol. Sci. 2019;20:1694. doi: 10.3390/ijms20071694. PubMed DOI PMC

DeLaughter D.M., Clark C.R., Christodoulou D.C., Seidman C.E., Baldwin H.S., Seidman J.G., Barnett J.V. Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro. PLoS ONE. 2016;11:e0159710. doi: 10.1371/journal.pone.0159710. PubMed DOI PMC

Morén A., Ichijo H., Miyazono K. Molecular cloning and characterization of the human and porcine transforming growth factor-beta type III receptors. Biochem. Biophys. Res. Commun. 1992;189:356–362. doi: 10.1016/0006-291X(92)91566-9. PubMed DOI

Yang R.-B., Ng C.K.D., Wasserman S.M., Colman S.D., Shenoy S., Mehraban F., Kömüves L.G., Tomlinson J.E., Topper J.N. Identification of a Novel Family of Cell-surface Proteins Expressed in Human Vascular Endothelium. J. Biol. Chem. 2002;277:46364–46373. doi: 10.1074/jbc.M207410200. PubMed DOI

Long H., Bock H.H., Lei T., Chai X., Yuan J., Herz J., Frotscher M., Yang Z. Identification of alternatively spliced Dab1 and Fyn isoforms in pig. BMC Neurosci. 2011;12:17. doi: 10.1186/1471-2202-12-17. PubMed DOI PMC

Liu G.Y., Ge C.R., Zhang X., Gao S.Z. Isolation, sequence identification and tissue expression distribution of three novel porcine genes—RAB14, S35A3 and ITM2A. Mol. Biol. Rep. 2008;35:201–206. doi: 10.1007/s11033-007-9071-9. PubMed DOI

Uenishi H., Eguchi-Ogawa T., Shinkai H., Okumura N., Suzuki K., Toki D., Hamasima N., Awata T. PEDE (Pig EST Data Explorer) has been expanded into Pig Expression Data Explorer, including 10 147 porcine full-length cDNA sequences. Nucleic Acids Res. 2007;35:D650–D653. doi: 10.1093/nar/gkl954. PubMed DOI PMC

Martina J.A., Lelouvier B., Puertollano R. The Calcium Channel Mucolipin-3 is a Novel Regulator of Trafficking Along the Endosomal Pathway. Traffic. 2009;10:1143–1156. doi: 10.1111/j.1600-0854.2009.00935.x. PubMed DOI PMC

Sirotkin A.V., Florkovičová (Koničková) I., Schaeffer H.-J., Laurincik J., Harrath A.H. Interrelationships between ovarian follicles grown in culture and possible mediators. Reprod. Biol. 2017;17:97–104. doi: 10.1016/j.repbio.2017.01.005. PubMed DOI

Shindo K., Aishima S., Ohuchida K., Fujiwara K., Fujino M., Mizuuchi Y., Hattori M., Mizumoto K., Tanaka M., Oda Y. Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol. Cancer. 2013;12:168. doi: 10.1186/1476-4598-12-168. PubMed DOI PMC

Buhrke T., Lengler I., Lampen A. Analysis of proteomic changes induced upon cellular differentiation of the human intestinal cell line Caco-2. Dev. Growth Differ. 2011;53:411–426. doi: 10.1111/j.1440-169X.2011.01258.x. PubMed DOI

Dyszkiewicz-Konwińska M., Bryja A., Jopek K., Budna J., Khozmi R., Jeseta M., Bukowska D., Antosik P., Bruska M., Nowicki M., et al. Expression of genes responsible for cell morphogenesis involved in differentiation in porcine buccal pouch mucosal cells during long-term primary culture and real-time proliferation in vitro. J. Biol. Regul. Homeost. Agents. 2017;31:855–864. PubMed

Singh P., Carraher C., Schwarzbauer J.E. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 2010;26:397–419. doi: 10.1146/annurev-cellbio-100109-104020. PubMed DOI PMC

Miner J.H., Li C., Mudd J.L., Go G., Sutherland A.E. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development. 2004;131:2247–2256. doi: 10.1242/dev.01112. PubMed DOI

Li H., Yu T., Ma Y., Wang H. Expression of Laminin gene family in porcine pluripotent stem cells. Sheng Wu Gong Cheng Xue Bao. 2017;33:1304–1314. doi: 10.13345/j.cjb.170101. PubMed DOI

Hwang K.-C., Lee H.-Y., Cui X.-S., Kim J.-H., Kim N.H. Identification of maternal mRNAs in porcine parthenotes at the 2-cell stage: A comparison with the blastocyst stage. Mol. Reprod. Dev. 2005;70:314–323. doi: 10.1002/mrd.20204. PubMed DOI

Chermuła B., Brązert M., Iżycki D., Ciesiółka S., Kranc W., Celichowski P., Ożegowska K., Nawrocki M.J., Jankowski M., Jeseta M., et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro. Biomed Res. Int. 2019;2019:6545210. doi: 10.1155/2019/6545210. PubMed DOI PMC

Gorodkin J., Cirera S., Hedegaard J., Gilchrist M.J., Panitz F., Jørgensen C., Scheibye-Knudsen K., Arvin T., Lumholdt S., Sawera M., et al. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags. Genome Biol. 2007;8:R45. doi: 10.1186/gb-2007-8-4-r45. PubMed DOI PMC

Ge Z.-J., Schatten H., Zhang C.-L., Sun Q.-Y. Oocyte ageing and epigenetics. REPRODUCTION. 2015;149:R103–R114. doi: 10.1530/REP-14-0242. PubMed DOI PMC

Burnik Papler T., Vrtačnik Bokal E., Prosenc Zmrzljak U., Stimpfel M., Laganà A.S., Ghezzi F., Jančar N. PGR and PTX3 gene expression in cumulus cells from obese and normal weighting women after administration of long-acting recombinant follicle-stimulating hormone for controlled ovarian stimulation. Arch. Gynecol. Obstet. 2019;299:863–871. doi: 10.1007/s00404-018-5031-y. PubMed DOI

Trejter M., Hochol A., Tyczewska M., Ziolkowska A., Jopek K., Szyszka M., Malendowicz L.K., Rucinski M. Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis. Int. J. Mol. Med. 2015;35:702–714. doi: 10.3892/ijmm.2015.2064. PubMed DOI PMC

Chamier-Gliszczyńska A., Brązert M., Sujka-Kordowska P., Popis M., Ożegowska K., Stefańska K., Kocherova I., Celichowski P., Kulus M., Bukowska D., et al. Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture—A transcriptomic study. Med. J. Cell Biol. 2018;6:163–173. doi: 10.2478/acb-2018-0026. DOI

Nawrocki M.J., Celichowski P., Jankowski M., Kranc W., Bryja A., Borys-Wójcik S., Jeseta M., Antosik P., Bukowska D., Bruska M., et al. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation—A primary cell culture approach. Med. J. Cell Biol. 2018;6:186–194. doi: 10.2478/acb-2018-0029. DOI

Stefańska K., Chamier-Gliszczyńska A., Jankowski M., Celichowski P., Kulus M., Rojewska M., Antosik P., Bukowska D., Bruska M., Nowicki M., et al. Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture—A microarray assays. Med. J. Cell Biol. 2018;6:195–204. doi: 10.2478/acb-2018-0030. DOI

Kranc W., Brązert M., Ożegowska K., Budna-Tukan J., Celichowski P., Jankowski M., Bryja A., Nawrocki M.J., Popis M., Jeseta M., et al. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med. J. Cell Biol. 2018 doi: 10.2478/acb-2018-0015. DOI

Borys-Wójcik S., Kocherova I., Celichowski P., Popis M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Kempisty B. Protein oligomerization is the biochemical process highly up-regulated in porcine oocytes before in vitro maturation (IVM) Med. J. Cell Biol. 2018;6:155–162. doi: 10.2478/acb-2018-0025. DOI

Budna J., Celichowski P., Bryja A., Jeseta M., Jankowski M., Bukowska D., Antosik P., Nowicki A., Brüssow K.P., Bruska M., et al. Expression Changes in Fatty acid Metabolic Processrelated Genes in Porcine Oocytes During in Vitro Maturation. Med. J. Cell Biol. 2018;6:48–54. doi: 10.2478/acb-2018-0009. DOI

Huang D.W., Sherman B.T., Tan Q., Kir J., Liu D., Bryant D., Guo Y., Stephens R., Baseler M.W., Lane H.C., et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...