Cortical Granule Distribution and Expression Pattern of Genes Regulating Cellular Component Size, Morphogenesis, and Potential to Differentiation are Related to Oocyte Developmental Competence and Maturational Capacity In Vivo and In Vitro

. 2020 Jul 17 ; 11 (7) : . [epub] 20200717

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32708880

Polyspermia is an adverse phenomenon during mammalian fertilization when more than one sperm fuses with a single oocyte. The egg cell is prepared to prevent polyspermia by, among other ways, producing cortical granules (CGs), which are specialized intracellular structures containing enzymes that aim to harden the zona pellucida and block the fusion of subsequent sperm. This work focused on exploring the expression profile of genes that may be associated with cortical reactions, and evaluated the distribution of CGs in immature oocytes and the peripheral density of CGs in mature oocytes. Oocytes were isolated and then processed for in vitro maturation (IVM). Transcriptomic analysis of genes belonging to five ontological groups has been conducted. Six genes showed increased expression after IVM (ARHGEF2, MAP1B, CXCL12, FN1, DAB2, and SOX9), while the majority of genes decreased expression after IVM. Using CG distribution analysis in immature oocytes, movement towards the cortical zone of the oocyte during meiotic competence acquisition was observed. CGs peripheral density decreased with the rise in meiotic competence during the IVM process. The current results reveal important new insights into the in vitro maturation of oocytes. Our results may serve as a basis for further studies to investigate the cortical reaction of oocytes.

Zobrazit více v PubMed

Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Cytoplasmic and nuclear maturation of oocytes in mammals—Living in the shadow of cells developmental capability. Med. J. Cell Biol. 2018;6:13–17. doi: 10.2478/acb-2018-0003. DOI

Bianchi E., Doe B., Goulding D., Wright G.J. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508:483–487. doi: 10.1038/nature13203. PubMed DOI PMC

Burkart A.D., Xiong B., Baibakov B., Jiménez-Movilla M., Dean J. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 2012;197:37–44. doi: 10.1083/jcb.201112094. PubMed DOI PMC

Cheeseman L.P., Boulanger J., Bond L.M., Schuh M. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes. Nat. Commun. 2016;7 doi: 10.1038/ncomms13726. PubMed DOI PMC

Wessel G.M., Conner S.D., Berg L. Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. Development. 2002;126:567–576. PubMed

Connors S.A., Kanatsu-Shinohara M., Schultz R.M., Kopf G.S. Involvement of the Cytoskeleton in the Movement of Cortical Granules during Oocyte Maturation, and Cortical Granule Anchoring in Mouse Eggs. Dev. Biol. 1998;200:103–115. doi: 10.1006/dbio.1998.8945. PubMed DOI

Wang H.H., Cui Q., Zhang T., Wang Z.B., Ouyang Y.C., Shen W., Ma J.Y., Schatten H., Sun Q.Y. Rab3A, Rab27A, and Rab35 regulate different events during mouse oocyte meiotic maturation and activation. Histochem. Cell Biol. 2016;145:647–657. doi: 10.1007/s00418-015-1404-5. PubMed DOI

de Paola M., Bello O.D., Michaut M.A. Cortical Granule Exocytosis Is Mediated by α-SNAP and N-Ethilmaleimide Sensitive Factor in Mouse Oocytes. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0135679. PubMed DOI PMC

Kimura K., Kimura A. Rab6 is required for the exocytosis of cortical granules and the recruitment of separase to the granules during the oocyte-to-embryo transition in Caenorhabditis elegans. J. Cell Sci. 2012;125:5897–5905. doi: 10.1242/jcs.116400. PubMed DOI

Hulinska P., Martecikova S., Jeseta M., Machatkova M. Efficiency of in vitro fertilization is influenced by the meiotic competence of porcine oocytes and time of their maturation. Anim. Reprod. Sci. 2011;124:112–117. doi: 10.1016/j.anireprosci.2011.02.004. PubMed DOI

Schoevers E.J., Colenbrander B., Roelen B.A.J. Developmental stage of the oocyte during antral follicle growth and cumulus investment determines in vitro embryo development of sow oocytes. Theriogenology. 2007;67:1108–1122. doi: 10.1016/j.theriogenology.2006.12.009. PubMed DOI

Machatkova M., Horakova J., Hulinska P., Reckova Z., Hanzalova K. Early oocyte penetration can predict the efficiency of bovine embryo production in vitro. Zygote. 2008;16:203–209. doi: 10.1017/S0967199408004784. PubMed DOI

Marchal R., Feugang J.M., Perreau C., Venturi E., Terqui M., Mermillod P. Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology. 2001;56:17–29. doi: 10.1016/S0093-691X(01)00539-8. PubMed DOI

Bagg M.A., Nottle M.B., Armstrong D.T., Grupen C.G. Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod. Fertil. Dev. 2007;19:797–803. doi: 10.1071/RD07018. PubMed DOI

Sun Q.Y., Lai L., Bonk A., Prather R.S., Schatten H. Cytoplasmic changes in relation to nuclear maturation and early embryo developmental potential of porcine oocytes: Effects of gonadotropins, cumulus cells, follicular size, and protein synthesis inhibition. Mol. Reprod. Dev. 2001;59:192–198. doi: 10.1002/mrd.1022. PubMed DOI

Funahashi H. Polyspermic penetration in porcine IVM-IVF systems. Reprod. Fertil. Dev. 2003;15:167–177. doi: 10.1071/RD02076. PubMed DOI

Liu M. The biology and dynamics of mammalian cortical granules. Reprod. Biol. Endocrinol. 2011;9:149. doi: 10.1186/1477-7827-9-149. PubMed DOI PMC

Zhou C., Zhang X., ShiYang X., Wang H., Xiong B. Tea polyphenol protects against cisplatin-induced meiotic defects in porcine oocytes. Aging (Albany N. Y.) 2019;11:4706–4719. doi: 10.18632/aging.102084. PubMed DOI PMC

Gardner A.J., Knott J.G., Jones K.T., Evans J.P. CaMKII can participate in but is not sufficient for the establishment of the membrane block to polyspermy in mouse eggs. J. Cell. Physiol. 2007;212:275–280. doi: 10.1002/jcp.21046. PubMed DOI

Ducibella T. The cortical reaction and development of activation competence in mammalian oocytes. Hum. Reprod. Update. 1996;2:29–42. doi: 10.1093/humupd/2.1.29. PubMed DOI

Yoshida M., Cran D.G., Pursel V.G. Confocal and fluorescence microscopic study using lectins of the distribution of cortical granules during the maturation and fertilization of pig oocytes. Mol. Reprod. Dev. 1993;36:462–468. doi: 10.1002/mrd.1080360409. PubMed DOI

Wang W.-H., Sun Q.-Y., Hosoe M., Shioya Y., Day B.N. Quantified Analysis of Cortical Granule Distribution and Exocytosis of Porcine Oocytes during Meiotic Maturation and Activation1. Biol. Reprod. 1997;56:1376–1382. doi: 10.1095/biolreprod56.6.1376. PubMed DOI

Wiesława K., Maurycy J., Joanna B., Piotr C., Ronza K., Artur B., Sylwia B., Marta D., Michal J., Magdalena M., et al. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro–signaling pathway activation approach. Med. J. Cell Biol. 2018;6 doi: 10.2478/acb-2018-0004. DOI

Budna J., Celichowski P., Knap S., Jankowski M., Magas M., Nawrocki M.J., Ramlau P., Nowicki A., Rojewska M., Chermuła B., et al. Fatty Acids Related Genes Expression Undergo Substantial Changes in Porcine Oviductal Epithelial Cells During Long-Term Primary Culture. Med. J. Cell Biol. 2018;6:39–47. doi: 10.2478/acb-2018-0008. DOI

Kulus M., Sujka-kordowska P., Konwerska A., Celichowski P., Kranc W., Kulus J., Piotrowska-kempisty H., Antosik P. New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Di ff erentiation during Short-Term Primary In Vitro Culture—Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicle. Int. J. Mol. Sci. 2019;20:3966. doi: 10.3390/ijms20163966. PubMed DOI PMC

Stefańska K., Kocherova I., Knap S., Kulus M., Celichowski P., Jeseta M. The genes regulating maintenance of cellular protein location are differentially expressed in porcine epithelial oviductal cells during longterm in vitro cultivation. Med. J. Cell Biol. 2019;7:77–85. doi: 10.2478/acb-2019-0010. DOI

Chamier-Gliszczyńska A., Kałuzna S., Stefańska K., Celichowski P., Antosik P., Bukowska D., Bruska M., Zakova J., Machatkova M., Jeseta M., et al. Analysis of expression of genes responsible for regulation of cellular proliferation and migration-Microarray approach based on porcine oocyte model. Med. J. Cell Biol. 2019;7:48–57. doi: 10.2478/acb-2019-0007. DOI

Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI

Kocherova I., Kulus M., Dompe C., Antosik P., Bukowska D. Biochemical properties of cofactor and coenzyme metabolism in porcine oviductal epithelial cells—A microarray study. Med. J. Cell Biol. 2019;7:125–133. doi: 10.2478/acb-2019-0017. DOI

Yanez L.Z., Han J., Behr B.B., Pera R.A.R., Camarillo D.B. Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat. Commun. 2016;7 doi: 10.1038/ncomms10809. PubMed DOI PMC

Krendel M., Zenke F.T., Bokoch G.M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 2002;4:294–301. doi: 10.1038/ncb773. PubMed DOI

Aznar S., Fernández-Valerón P., Espina C., Lacal J.C. Rho GTPases: Potential candidates for anticancer therapy. Cancer Lett. 2004;206:181–191. doi: 10.1016/j.canlet.2003.08.035. PubMed DOI

Zhong Z.-S., Huo L.-J., Liang C.-G., Chen D.-Y., Sun Q.-Y. Small GTPase RhoA is required for ooplasmic segregation and spindle rotation, but not for spindle organization and chromosome separation during mouse oocyte maturation, fertilization, and early cleavage. Mol. Reprod. Dev. 2005;71:256–261. doi: 10.1002/mrd.20253. PubMed DOI

Zhang Y., Duan X., Cao R., Liu H.-L., Cui X.-S., Kim N.-H., Rui R., Sun S.-C. Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development. Cell Cycle. 2014;13:3390–3403. doi: 10.4161/15384101.2014.952967. PubMed DOI PMC

Tan K., An L., Wang S.-M., Wang X.-D., Zhang Z.-N., Miao K., Sui L.-L., He S.-Z., Nie J.-Z., Wu Z.-H., et al. Actin Disorganization Plays a Vital Role in Impaired Embryonic Development of In Vitro-Produced Mouse Preimplantation Embryos. PLoS ONE. 2015;10:e0130382. doi: 10.1371/journal.pone.0130382. PubMed DOI PMC

Hoelker M., Salilew-Wondim D., Drillich M., Christine G.-B., Ghanem N., Goetze L., Tesfaye D., Schellander K., Heuwieser W. Transcriptional response of the bovine endometrium and embryo to endometrial polymorphonuclear neutrophil infiltration as an indicator of subclinical inflammation of the uterine environment. Reprod. Fertil. Dev. 2012;24:778. doi: 10.1071/RD11171. PubMed DOI

Villarroel-Campos D., Gonzalez-Billault C. The MAP1B case: An old MAP that is new again. Dev. Neurobiol. 2014;74:953–971. doi: 10.1002/dneu.22178. PubMed DOI

Gödel M., Temerinac D., Grahammer F., Hartleben B., Kretz O., Riederer B.M., Propst F., Kohl S., Huber T.B. Microtubule Associated Protein 1b (MAP1B) Is a Marker of the Microtubular Cytoskeleton in Podocytes but Is Not Essential for the Function of the Kidney Filtration Barrier in Mice. PLoS ONE. 2015;10:e0140116. doi: 10.1371/journal.pone.0140116. PubMed DOI PMC

Kim J.-M., Park J.-E., Yoo I., Han J., Kim N., Lim W.-J., Cho E.-S., Choi B., Choi S., Kim T.-H., et al. Integrated transcriptomes throughout swine oestrous cycle reveal dynamic changes in reproductive tissues interacting networks. Sci. Rep. 2018;8:5436. doi: 10.1038/s41598-018-23655-1. PubMed DOI PMC

Zhao W., Shahzad K., Jiang M., Graugnard D.E., Rodriguez-Zas S.L., Luo J., Loor J.J., Hurley W.L. Bioinformatics and Gene Network Analyses of the Swine Mammary Gland Transcriptome during Late Gestation. Bioinform. Biol. Insights. 2013;7:193–216. doi: 10.4137/BBI.S12205. PubMed DOI PMC

Terenina E., Fabre S., Bonnet A., Monniaux D., Robert-Granié C., SanCristobal M., Sarry J., Vignoles F., Gondret F., Monget P., et al. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol. Genom. 2017;49:67–80. doi: 10.1152/physiolgenomics.00069.2016. PubMed DOI

Hatzirodos N., Hummitzsch K., Irving-Rodgers H.F., Rodgers R.J. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0119800. PubMed DOI PMC

Budna J., Bryja A., Celichowski P., Kahan R., Kranc W., Ciesiółka S., Rybska M., Borys S., Jeseta M., Bukowska D., et al. Genes of cellular components of morphogenesis in porcine oocytes before and after IVM. Reproduction. 2017;154:535–545. doi: 10.1530/REP-17-0367. PubMed DOI

Schuh M. An actin-dependent mechanism for long range vesicle transport. Nat. Cell Biol. 2011;13:1431. doi: 10.1038/ncb2353. PubMed DOI PMC

Cui Z., Yu L., Shi Yang X., Zhang Y., Shi X., Li Y., Chen Q., Xiong B. Brefeldin A impairs porcine oocyte meiotic maturation via interruption of organelle dynamics. J. Cell. Physiol. 2019;234:20111–20117. doi: 10.1002/jcp.28611. PubMed DOI

Miao Y., Zhou C., Cui Z., Tang L., ShiYang X., Lu Y., Zhang M., Dai X., Xiong B. Dynein promotes porcine oocyte meiotic progression by maintaining cytoskeletal structures and cortical granule arrangement. Cell Cycle. 2017;16:2139–2145. doi: 10.1080/15384101.2017.1380133. PubMed DOI PMC

Gieryng A., Bogunia-Kubik K. Znaczenie interakcji między SDF-1 i CXCR4 w hematopoezie i mobilizacji macierzystych komórek hematopoetycznych do krwi obwodowej. Postepy Hig. Med. Dosw. 2007;61:369–383. PubMed

Kulus M., Kulus J., Jankowski M., Borowiec B., Jeseta M., Bukowska D., Brüssow K.P., Kempisty B., Antosik P. The use of mesenchymal stem cells in veterinary medicine. Med. J. Cell Biol. 2018;6:101–107. doi: 10.2478/acb-2018-0016. DOI

Lorenz M., Mozdziak P., Kempisty B., Dyszkiewicz-konwińska M. Application potential and plasticity of human stem cells. Med J. Cell Boil. 2019;7:140–145. doi: 10.2478/acb-2019-0019. DOI

Zuccarello D., Ferlin A., Garolla A., Menegazzo M., Perilli L., Ambrosini G., Foresta C. How the human spermatozoa sense the oocyte: A new role of SDF1-CXCR4 signalling. Int. J. Androl. 2011;34:e554–e565. doi: 10.1111/j.1365-2605.2011.01158.x. PubMed DOI

Dyszkiewicz-Konwińska M., Bryja A., Jopek K., Budna J., Khozmi R., Jeseta M., Bukowska D., Antosik P., Bruska M., Nowicki M., et al. Expression of genes responsible for cell morphogenesis involved in differentiation in porcine buccal pouch mucosal cells during long-term primary culture and real-time proliferation in vitro. J. Biol. Regul. Homeost. Agents. 2017;31:855–864. PubMed

Kryczek I., Lange A., Mottram P., Alvarez X., Cheng P., Hogan M., Moons L., Wei S., Zou L., Machelon V., et al. CXCL12 and Vascular Endothelial Growth Factor Synergistically Induce Neoangiogenesis in Human Ovarian Cancers. Cancer Res. 2005;65:465–472. PubMed

Nishigaki A., Okada H., Okamoto R., Shimoi K., Miyashiro H., Yasuda K., Kanzaki H. The concentration of human follicular fluid stromal cell-derived factor-1 is correlated with luteinization in follicles. Gynecol. Endocrinol. 2013;29:230–234. doi: 10.3109/09513590.2012.736551. PubMed DOI

Chao W.-T., Kunz J. Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett. 2009;583:1337–1343. doi: 10.1016/j.febslet.2009.03.037. PubMed DOI PMC

Moncrieff L., Mozdziak P., Jeseta M., Machatkova M., Kranc W. Ovarian follicular cells–living in the shadow of stemness cellular competence. Med J. Cell Boil. 2019;7:134–140. doi: 10.2478/acb-2019-0018. DOI

Stefańska K., Chamier-Gliszczyńska A., Jankowski M., Celichowski P., Kulus M., Rojewska M., Antosik P., Bukowska D., Bruska M., Nowicki M., et al. Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture—A microarray assays. Med. J. Cell Biol. 2018;6:195–204. doi: 10.2478/acb-2018-0030. DOI

Mok S.C., Wong K.-K., Chan R.K.W., Lau C.C., Tsao S.-W., Knapp R.C., Berkowitz R.S. Molecular Cloning of Differentially Expressed Genes in Human Epithelial Ovarian Cancer. Gynecol. Oncol. 1994;52:247–252. doi: 10.1006/gyno.1994.1040. PubMed DOI

Hocevar B.A., Smine A., Xu X.X., Howe P.H. The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. Embo J. 2001;20:2789–2801. doi: 10.1093/emboj/20.11.2789. PubMed DOI PMC

Benito-Jardón M., Klapproth S., Gimeno-LLuch I., Petzold T., Bharadwaj M., Müller D.J., Zuchtriegel G., Reichel C.A., Costell M. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes. Elife. 2017;6 doi: 10.7554/eLife.22264. PubMed DOI PMC

Chermuła B., Brązert M., Iżycki D., Ciesiółka S., Kranc W., Celichowski P., Ożegowska K., Nawrocki M.J., Jankowski M., Jeseta M., et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro. Biomed Res. Int. 2019;2019:6545210. doi: 10.1155/2019/6545210. PubMed DOI PMC

Gonen N., Quinn A., O’Neill H.C., Koopman P., Lovell-Badge R. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone. PLoS Genet. 2017;13:e1006520. PubMed PMC

Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.-C., Klugmann C., Klasen C., Holter N.I., et al. Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation. Cell. 2009;139:1130–1142. doi: 10.1016/j.cell.2009.11.021. PubMed DOI

Li J., Dong S. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation. Stem Cells Int. 2016;2016:1–12. doi: 10.1155/2016/2470351. PubMed DOI PMC

Montero J.A., Lorda-Diez C.I., Francisco-Morcillo J., Chimal-Monroy J., Garcia-Porrero J.A., Hurle J.M. Sox9 Expression in Amniotes: Species-Specific Differences in the Formation of Digits. Front. Cell Dev. Biol. 2017;5:23. doi: 10.3389/fcell.2017.00023. PubMed DOI PMC

Di Giancamillo A., Deponti D., Modina S., Tessaro I., Domeneghini C., Peretti G.M. Age-related modulation of angiogenesis-regulating factors in the swine meniscus. J. Cell. Mol. Med. 2017;21:3066–3075. doi: 10.1111/jcmm.13218. PubMed DOI PMC

Kempisty B., Ziółkowska A., Ciesiółka S., Piotrowska H., Antosik P., Bukowska D., Nowicki M., Brüssow K.P., Zabel M. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J. Biol. Regul. Homeost. Agents. 2014;28:625–635. PubMed

Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI

Kempisty B., Ziółkowska A., Piotrowska H., Ciesiółka S., Antosik P., Bukowska D., Zawierucha P., Woźna M., Jaśkowski J.M., Brüssow K.P., et al. Short-term cultivation of porcine cumulus cells influences the cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) protein expression--a real-time cell proliferation approach. J. Reprod. Dev. 2013;59:339–345. doi: 10.1262/jrd.2012-162. PubMed DOI PMC

Simon A.M., Goodenough D.A., Li E., Paul D.L. Female infertility in mice lacking connexin 37. Nature. 1997;385:525–529. doi: 10.1038/385525a0. PubMed DOI

Wang H.X., Tong D., El-Gehani F., Tekpetey F.R., Kidder G.M. Connexin expression and gap junctional coupling in human cumulus cells: Contribution to embryo quality. J. Cell. Mol. Med. 2009;13:972–984. doi: 10.1111/j.1582-4934.2008.00373.x. PubMed DOI PMC

Li S.-H., Lin M.-H., Hwu Y.-M., Lu C.-H., Yeh L.-Y., Chen Y.-J., Lee R.K.-K. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod. Biol. Endocrinol. 2015;13:93. doi: 10.1186/s12958-015-0091-3. PubMed DOI PMC

Shao L., Chian R.-C., Xu Y., Yan Z., Zhang Y., Gao C., Gao L., Liu J., Cui Y. Genomic expression profiles in cumulus cells derived from germinal vesicle and MII mouse oocytes. Reprod. Fertil. Dev. 2016;28:1798. doi: 10.1071/RD15077. PubMed DOI

Cao R., Wu W., Zhou X., Liu K., Li B., Huang X., Zhang Y., Liu H. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary. Int. J. Biochem. Cell Biol. 2015;68:148–157. doi: 10.1016/j.biocel.2015.08.011. PubMed DOI

Fan H.-Y., Liu Z., Shimada M., Sterneck E., Johnson P.F., Hedrick S.M., Richards J.S. MAPK3/1 (ERK1/2) in Ovarian Granulosa Cells Are Essential for Female Fertility. Science. 2009;324:938–941. doi: 10.1126/science.1171396. PubMed DOI PMC

Borys-Wójcik S., Kocherova I., Celichowski P., Popis M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Kempisty B. Protein oligomerization is the biochemical process highly up-regulated in porcine oocytes before in vitro maturation (IVM) Med. J. Cell Biol. 2018;6:155–162. doi: 10.2478/acb-2018-0025. DOI

Kranc W., Budna J., Chachuła A., Borys S., Bryja A., Rybska M., Ciesiółka S., Sumelka E., Jeseta M., Brüssow K.P., et al. Cell Migration Is the Ontology Group Differentially Expressed in Porcine Oocytes before and after in Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36:273–282. doi: 10.1089/dna.2016.3425. PubMed DOI

Lee R., Lee W.-Y., Park H.-J., Ha W.-T., Woo J.-S., Chung H.-J., Lee J.-H., Hong K., Song H. Stage-specific expression of DDX4 and c-kit at different developmental stages of the porcine testis. Anim. Reprod. Sci. 2018;190:18–26. doi: 10.1016/j.anireprosci.2017.12.020. PubMed DOI

Saatcioglu H.D., Cuevas I., Castrillon D.H. Control of Oocyte Reawakening by Kit. PLoS Genet. 2016;12:e1006215. doi: 10.1371/journal.pgen.1006215. PubMed DOI PMC

Moniruzzaman M., Miyano T. KIT-KIT Ligand in the Growth of Porcine Oocytes in Primordial Follicles. J. Reprod. Dev. 2007;53:1273–1281. doi: 10.1262/jrd.19107. PubMed DOI

Sternlicht M., Werb Z. How Matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Biol. 2009:463–516. doi: 10.1146/annurev.cellbio.17.1.463. PubMed DOI PMC

Hägglund A.C., Ny A., Leonardsson G., Ny T. Regulation and localization of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse ovary during gonadotropin-induced ovulation. Endocrinology. 1999;140:4351–4358. doi: 10.1210/endo.140.9.7002. PubMed DOI

Puttabyatappa M., Jacot T.A., Al-Alem L.F., Rosewell K.L., Duffy D.M., Brännström M., Curry T.E. Ovarian Membrane-Type Matrix Metalloproteinases: Induction of MMP14 and MMP16 During the Periovulatory Period in the Rat, Macaque, and Human1. Biol. Reprod. 2014;91 doi: 10.1095/biolreprod.113.115717. PubMed DOI PMC

Bakke L.J., Dow M.P., Cassar C.A., Peters M.W., Pursley J.R., Smith G.W. Effect of the preovulatory gonadotropin surge on matrix metalloproteinase (MMP)-14, MMP-2, and tissue inhibitor of metalloproteinases-2 expression within bovine periovulatory follicular and luteal tissue. Biol. Reprod. 2002;66:1627–1634. doi: 10.1095/biolreprod66.6.1627. PubMed DOI

Kempisty B., Piotrowska H., Rybska M., Woźna M., Antosik P., Bukowska D., Zawierucha P., Ciesiółka S., Jaśkowski J.M., Nowicki M., et al. Expression of INHβA and INHβB proteins in porcine oocytes cultured in vitro is dependent on the follicle size. Zygote. 2015;23:205–211. doi: 10.1017/S0967199413000439. PubMed DOI PMC

Matzuk M.M., Brown C.W., Houston-Hawkins D.E., Woodruff T.K. Insertion of Inhbb into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions. Nat. Genet. 2000;25:453–457. PubMed

Richani D., Constance K., Lien S., Agapiou D., Stocker W.A., Hedger M.P., Ledger W.L., Thompson J.G., Robertson D.M., Mottershead D.G., et al. Cumulin and FSH Cooperate to Regulate Inhibin B and Activin B Production by Human Granulosa-Lutein Cells In Vitro. Endocrinology. 2019;160:853–862. doi: 10.1210/en.2018-01026. PubMed DOI

Kempisty B., Jackowska M., Woźna M., Antosik P., Piotrowska H., Zawierucha P., Bukowska D., Jaśkowski J.M., Nowicki M., Brüssow K.P. Expression and cellular distribution of INHA and INHB before and after in vitro cultivation of porcine oocytes isolated from follicles of different size. J. Biomed. Biotechnol. 2012;2012:742829. doi: 10.1155/2012/742829. PubMed DOI PMC

Ohnuma K., Kaneko H., Noguchi J., Kikuchi K., Ozawa M., Hasegawa Y. Production of inhibin A and inhibin B in boars: Changes in testicular and circulating levels of dimeric inhibins and characterization of inhibin forms during testis growth. Domest. Anim. Endocrinol. 2007;33:410–421. doi: 10.1016/j.domaniend.2006.08.004. PubMed DOI

Nguyen T., Lee S., Hatzirodos N., Hummitzsch K., Sullivan T.R., Rodgers R.J., Irving-Rodgers H.F. Spatial differences within the membrana granulosa in the expression of focimatrix and steroidogenic capacity. Mol. Cell. Endocrinol. 2012;363:62–73. doi: 10.1016/j.mce.2012.07.009. PubMed DOI

Du X., Pan Z., Li Q., Liu H., Li Q. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death Dis. 2018;9:151. doi: 10.1038/s41419-017-0205-2. PubMed DOI PMC

Li Q., Du X., Pan Z., Zhang L., Li Q. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol. Cell. Endocrinol. 2018;476:84–95. doi: 10.1016/j.mce.2018.04.012. PubMed DOI

Wang W., Chen X., Li X., Wang L., Zhang H., He Y., Wang J., Zhao Y., Zhang B., Xu Y. Interference RNA-based silencing of endogenous SMAD4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis. Reproduction. 2011;141:643–651. doi: 10.1530/REP-10-0098. PubMed DOI

Matsumoto H., Zhao X., Das S.K., Hogan B.L.M., Dey S.K. Indian Hedgehog as a Progesterone-Responsive Factor Mediating Epithelial–Mesenchymal Interactions in the Mouse Uterus. Dev. Biol. 2002;245:280–290. doi: 10.1006/dbio.2002.0645. PubMed DOI

Goossens K., Van Soom A., Van Zeveren A., Favoreel H., Peelman L.J. Quantification of Fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. Bmc Dev. Biol. 2009;9:1. doi: 10.1186/1471-213X-9-1. PubMed DOI PMC

Jankovicova J., Secova P., Manaskova-Postlerova P., Simonik O., Frolikova M., Chmelikova E., Horovska L., Michalkova K., Dvorakova-Hortova K., Antalikova J. Detection of CD9 and CD81 tetraspanins in bovine and porcine oocytes and embryos. Int. J. Biol. Macromol. 2019;123:931–938. doi: 10.1016/j.ijbiomac.2018.11.161. PubMed DOI

Runge K.E., Evans J.E., He Z.-Y., Gupta S., McDonald K.L., Stahlberg H., Primakoff P., Myles D.G. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 2007;304:317–325. doi: 10.1016/j.ydbio.2006.12.041. PubMed DOI

Schneyer A., Sidis Y., Xia Y., Saito S., Del Re E., Lin H.Y., Keutmann H. Differential actions of follistatin and follistatin-like 3. Mol. Cell. Endocrinol. 2004;225:25–28. PubMed

Tortoriello D.V., Sidis Y., Holtzman D.A., Holmes W.E., Schneyer A.L. Human follistatin-related protein: A structural homologue of follistatin with nuclear localization. Endocrinology. 2001;142:3426–3434. doi: 10.1210/endo.142.8.8319. PubMed DOI

Yao H.H.C., Matzuk M.M., Jorgez C.J., Menke D.B., Page D.C., Swain A., Capel B. Follistatin operates downstream ofWnt4 in mammalian ovary organogenesis. Dev. Dyn. 2004;230:210–215. doi: 10.1002/dvdy.20042. PubMed DOI PMC

Wang Y., Ge W. Developmental profiles of activin betaA, betaB, and follistatin expression in the zebrafish ovary: Evidence for their differential roles during sexual maturation and ovulatory cycle. Biol. Reprod. 2004;71:2056–2064. doi: 10.1095/biolreprod.104.032649. PubMed DOI

Zand-Vakili M., Golkar-Narenji A., Mozdziak P.E., Eimani H. An in vitro study on oocyte and follicles of transplanted ovaries treated with vascular endothelial growth factor. J. Turk. Ger. Gynecol. Assoc. 2017;18:167–173. doi: 10.4274/jtgga.2017.0026. PubMed DOI PMC

Hanna M., Liu H., Amir J., Sun Y., Morris S.W., Siddiqui M.A.Q., Lau L.F., Chaqour B. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J. Biol. Chem. 2009;284:23125–23136. doi: 10.1074/jbc.M109.019059. PubMed DOI PMC

Lau L.F. CCN1/CYR61: The very model of a modern matricellular protein. Cell. Mol. Life Sci. 2011;68:3149–3163. doi: 10.1007/s00018-011-0778-3. PubMed DOI PMC

Bigham A.W., Julian C.G., Wilson M.J., Vargas E., Browne V.A., Shriver M.D., Moore L.G. Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiol. Genom. 2014;46:687–697. doi: 10.1152/physiolgenomics.00063.2014. PubMed DOI PMC

DeLaughter D.M., Clark C.R., Christodoulou D.C., Seidman C.E., Baldwin H.S., Seidman J.G., Barnett J.V. Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro. PLoS ONE. 2016;11:e0159710. doi: 10.1371/journal.pone.0159710. PubMed DOI PMC

Sevilla T., Sivera R., Martínez-Rubio D., Lupo V., Chumillas M.J., Calpena E., Dopazo J., Vílchez J.J., Palau F., Espinós C. The EGR2 gene is involved in axonal Charcot−Marie−Tooth disease. Eur. J. Neurol. 2015;22:1548–1555. doi: 10.1111/ene.12782. PubMed DOI

Vite A., Li J., Radice G.L. New functions for α-catenins in health and disease: From cancer to heart regeneration. Cell Tissue Res. 2015;360:773–783. doi: 10.1007/s00441-015-2123-x. PubMed DOI PMC

Watari A., Yutsudo M. Multi-functional gene ASY/Nogo/RTN-X/RTN4: Apoptosis, tumor suppression, and inhibition of neuronal regeneration. Apoptosis. 2003;8:5–9. doi: 10.1023/A:1021639016300. PubMed DOI

Wang C.-J., Zhang Z.-Z., Xu J., Wang M., Zhao W.-Y., Tu L., Zhuang C., Liu Q., Shen Y.-Y., Cao H., et al. SLITRK3 expression correlation to gastrointestinal stromal tumor risk rating and prognosis. World. J. Gastroenterol. 2015;21:8398. doi: 10.3748/wjg.v21.i27.8398. PubMed DOI PMC

Kidd T., Brose K., Mitchell K.J., Fetter R.D., Tessier-Lavigne M., Goodman C.S., Tear G. Roundabout Controls Axon Crossing of the CNS Midline and Defines a Novel Subfamily of Evolutionarily Conserved Guidance Receptors. Cell. 1998;92:205–215. doi: 10.1016/S0092-8674(00)80915-0. PubMed DOI

Wu Y., Zhang S., Xu Q., Zou H., Zhou W., Cai F., Li T., Song W. Regulation of global gene expression and cell proliferation by APP. Sci. Rep. 2016;6:22460. doi: 10.1038/srep22460. PubMed DOI PMC

Purohit A., Sadanandam A., Myneni P., Singh R.K. Semaphorin 5A mediated cellular navigation: Connecting nervous system and cancer. Biochim. Biophys. Acta Rev. Cancer. 2014;1846:485–493. doi: 10.1016/j.bbcan.2014.09.006. PubMed DOI PMC

Onishi K., Hollis E., Zou Y. Axon guidance and injury—Lessons from Wnts and Wnt signaling. Curr. Opin. Neurobiol. 2014;27:232–240. doi: 10.1016/j.conb.2014.05.005. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...