New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30834271
PubMed Central
PMC6374792
DOI
10.1155/2019/6545210
Knihovny.cz E-zdroje
- MeSH
- cévy růst a vývoj metabolismus MeSH
- folikulární buňky cytologie metabolismus MeSH
- fyziologická neovaskularizace genetika MeSH
- lidé MeSH
- morfogeneze genetika MeSH
- oocyty růst a vývoj MeSH
- oogeneze genetika MeSH
- ovariální folikul růst a vývoj MeSH
- ovarium růst a vývoj metabolismus MeSH
- prasata MeSH
- primární buněčná kultura MeSH
- proteosyntéza genetika MeSH
- vývojová regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The physiological processes that drive the development of ovarian follicle, as well as the process of oogenesis, are quite well known. Granulosa cells are major players in this occurrence, being the somatic element of the female gamete development. They participate directly in the processes of oogenesis, building the cumulus-oocyte complex surrounding the ovum. In addition to that, they have a further impact on the reproductive processes, being a place of steroid sex hormone synthesis and secretion. It is known that the follicle development creates a major need for angiogenesis and blood vessel development in the ovary. In this study, we use novel molecular approaches to analyze markers of these processes in porcine granulosa cultured primarily in vitro. The cells were recovered from mature sus scrofa specimen after slaughter. They were then subjected to enzymatic digestion and culture primarily for a short term. The RNA was extracted from cultures in specific time periods (0h, 24h, 48h, 96h, and 144h) and analyzed using expression microarrays. The genes that exhibited fold change bigger than |2|, and adjusted p-value lower than 0.05, were considered differentially expressed. From these, we have chosen the members of "angiogenesis," "blood vessel development," "blood vessel morphogenesis," "cardiovascular system development," and "vasculature development" for further selection. CCL2, FGFR2, SFRP2, PDPN, DCN, CAV1, CHI3L1, ITGB3, FN1, and LOX which are upregulated, as well as CXCL10, NEBL, IHH, TGFBR3, SCUBE1, IGF1, EDNRA, RHOB, PPARD, and SLITRK5 genes whose expression is downregulated through the time of culture, were chosen as the potential markers, as their expression varied the most during the time of culture. The fold changes were further validated with RT-qPCR. The genes were described, with special attention to their possible function in GCs during culture. The results broaden the general knowledge about GC's in vitro molecular processes and might serve as a point of reference for further in vivo and clinical studies.
Department of Anatomy Poznan University of Medical Sciences Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences Poznan Poland
Division of Anatomy and Histology University of Zielona Góra Zielona Góra Poland
Veterinary Center Nicolaus Copernicus University in Torun Torun Poland
Zobrazit více v PubMed
D’Aurora M., Sperduti S., Di Emidio G., Stuppia L., Artini P. G., Gatta V. Inside the granulosa transcriptome. Gynecological Endocrinology. 2016;32(12):951–956. doi: 10.1080/09513590.2016.1223288. PubMed DOI
Kranc W., Budna J., Kahan R., et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. Journal of Biological Regulators and Homeostatic Agents. 2017;31(1):1–8. PubMed
Kranc W., Budna J., Dudek M., et al. The origin, in vitro differentiation, and stemness specificity of progenitor cells. Journal of Biological Regulators and Homeostatic Agents. 2017;31(2):365–369. PubMed
Budna J., Celichowski P., Karimi P., et al. Does porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Advances in Cell Biology. 2017;5(1):1–14. doi: 10.1515/acb-2017-0001. DOI
Lan C., Chen M., Tai K., et al. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling. Scientific Reports. 2015;5(1) doi: 10.1038/srep14994. PubMed DOI PMC
Rybska M., Knap S., Jankowski M., et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Medical Journal of Cell Biology. 2018;6(1):33–38. doi: 10.2478/acb-2018-0006. DOI
Rybska M., Knap S., Jankowski M., et al. Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability. Medical Journal of Cell Biology. 2018;6(1):13–17. doi: 10.2478/acb-2018-0003. DOI
Orisaka M., Tajima K., Tsang B. K., Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. Journal of Ovarian Research. 2009;2(1, article 9) doi: 10.1186/1757-2215-2-9. PubMed DOI PMC
Havelock J. C., Rainey W. E., Carr B. R. Ovarian granulosa cell lines. Molecular and Cellular Endocrinology. 2004;228(1-2):67–78. doi: 10.1016/j.mce.2004.04.018. PubMed DOI
Nawrocki M. J., Celichowski P., Budna J., et al. The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation. Advances in Cell Biology. 2017;5(2):135–142. doi: 10.1515/acb-2017-0012. DOI
Kaczmarek M. M., Schams D., Ziecik A. J. Role of vascular endothelial growth factor in ovarian physiology - an overview. Reproductive Biology and Endocrinology. 2005;5(2):111–36. PubMed
Douglas N. C., Tang H., Gomez R., et al. Vascular endothelial growth factor receptor 2 (VEGFR-2) functions to promote uterine decidual angiogenesis during early pregnancy in the mouse. Endocrinology. 2009;150(8):3845–3854. doi: 10.1210/en.2008-1207. PubMed DOI PMC
Robinson R. S., Woad K. J., Hammond A. J., Laird M., Hunter M. G., Mann G. E. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138(6):869–881. doi: 10.1530/REP-09-0283. PubMed DOI
Trejter M., Hochol A., Tyczewska M., et al. Sex-related gene expression profiles in the adrenal cortex in the mature rat: Microarray analysis with emphasis on genes involved in steroidogenesis. International Journal of Molecular Medicine. 2015;35(3):702–714. doi: 10.3892/ijmm.2015.2064. PubMed DOI PMC
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry. 1987;162(1):156–159. PubMed
Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI
Kordus R. J., LaVoie H. A. Granulosa cell biomarkers to predict pregnancy in ART: Pieces to solve the puzzle. Reproduction. 2017;153(2):R69–R83. doi: 10.1530/REP-16-0500. PubMed DOI
Dzafic E., Stimpfel M., Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. Journal of Assisted Reproduction and Genetics. 2013;30(10):1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC
Chronowska E. High-throughput analysis of ovarian granulosa cell transcriptome. BioMed Research International. 2014;2014:7. doi: 10.1155/2014/213570.213570 PubMed DOI PMC
Dias F. C., Khan M. I., Sirard M. A., Adams G. P., Singh J. Transcriptome analysis of granulosa cells after conventional vs long FSH-induced superstimulation in cattle. BMC Genomics. 2018;19(1) doi: 10.1186/s12864-018-4642-9. PubMed DOI PMC
Fraser H. M., Wulff C. Angiogenesis in the corpus luteum. Reproductive Biology and Endocrinology. 2003;1, article no. 88 doi: 10.1186/1477-7827-1-88. PubMed DOI PMC
Sujka-Kordowska P., Malińska A., Zabel M. Selected aspects of angiogensis in haematological malignancies. Advances in Cell Biology. 2011;2011:165–187.
Konwerska A., Janik B., Malinska A., Witkiewicz W., Zabel M. The contribution of endothelial marker proteins in the determination of vascular angiogenic potential, in normal physiological conditions and in neoplasia. Advances in Cell Biology. 2011;3(4):69–83. doi: 10.2478/v10052-011-0005-2. DOI
Sterzynska K., Sujka-Kordowska P., Witkiewicz W. The most important angiogenic growth factors influencing the development and function of blood vessels - in the context of coronary artery bypass grafting (CABG) Advances in Cell Biology. 2011;3(3):55–67. doi: 10.2478/v10052-011-0004-3. DOI
Knopik-Skrocka A., Krȩplewska P., Jarmołowska-Jurczyszyn D. Tumor blood vessels and vasculogenic mimicry - Current knowledge and searching for new cellular/molecular targets of anti-angiogenic therapy. Advances in Cell Biology. 2017;5(1):50–71. doi: 10.1515/acb-2017-0005. DOI
Peng C., Liu J., Yang G., Li Y. Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression: Quantum dot-based identification of biomarkers in cancer stromal cells. International Journal of Nanomedicine. 2018;13:161–174. doi: 10.2147/IJN.S143871. PubMed DOI PMC
Shindo K., Aishima S., Ohuchida K., et al. Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Molecular Cancer. 2013;12(1) PubMed PMC
Singh P., Carraher C., Schwarzbauer J. E. Assembly of fibronectin extracellular matrix. Annual Review of Cell and Developmental Biology. 2010;26:397–419. doi: 10.1146/annurev-cellbio-100109-104020. PubMed DOI PMC
Chen L. B., Murray A., Segal R. A., Bushnell A., Walsh M. L. Studies on intercellular LETS glycoprotein matrices. Cell. 1978;14(2):377–391. doi: 10.1016/0092-8674(78)90123-X. PubMed DOI
Desgrosellier J. S., Cheresh D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer. 2010;10(1):9–22. doi: 10.1038/nrc2748. PubMed DOI PMC
Vega F. M., Thomas M., Reymond N., Ridley A. J. The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Communication and Signaling. 2015;13(1) PubMed PMC
Gerald D., Adini I., Shechter S., et al. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. Nature Communications. 2013;4, article 2824 doi: 10.1038/ncomms3824. PubMed DOI PMC
Ungvari Z., Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: Recent advances. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2012;67(6):599–610. doi: 10.1093/gerona/gls072. PubMed DOI PMC
Neill T., Schaefer L., Iozzo R. V. Instructive roles of extracellular matrix on autophagy. The American Journal of Pathology. 2014;184(8):2146–2153. doi: 10.1016/j.ajpath.2014.05.010. PubMed DOI PMC
Fiedler L. R., Eble J. A. Decorin regulates endothelial cell-matrix interactions during angiogenesis. Cell Adhesion & Migration. 2009;3(1):3–6. doi: 10.4161/cam.3.1.7275. PubMed DOI PMC
House S. L., Castro A. M., Lupu T. S., et al. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology. 2016;310(5):H559–H571. doi: 10.1152/ajpheart.00758.2015. PubMed DOI PMC
Razani B., Engelman J. A., Wang X. B., et al. Caveolin-1 Null Mice Are Viable but Show Evidence of Hyperproliferative and Vascular Abnormalities. The Journal of Biological Chemistry. 2001;276(41):38121–38138. PubMed
Zhao Y.-Y., Zhao Y. D., Mirza M. K., et al. Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. The Journal of Clinical Investigation. 2009;119(7):2009–2018. doi: 10.1172/jci33338. PubMed DOI PMC
Shao R., Taylor S. L., Oh D. S., Schwartz L. M. Vascular heterogeneity and targeting: the role of YKL-40 in glioblastoma vascularization. Oncotarget . 2015;6(38):40507–40518. doi: 10.18632/oncotarget.5943. PubMed DOI PMC
Courtwright A., Siamakpour-Reihani S., Arbiser J. L., et al. Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Cancer Research. 2009;69(11):4621–4628. doi: 10.1158/0008-5472.CAN-08-3402. PubMed DOI PMC
Takamoto N., Zhao B., Tsai S. Y., DeMayo F. J. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Molecular Endocrinology. 2002;16(10):2338–2348. doi: 10.1210/me.2001-0154. PubMed DOI
Matsumoto H., Zhao X., Das S. K., Hogan B. L. M., Dey S. K. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Developmental Biology. 2002;245(2):280–290. doi: 10.1006/dbio.2002.0645. PubMed DOI
Ozkan G., Ulusoy S., Menteşe A., Karahan S. C., Cansiz M. New marker of platelet activation, SCUBE1, is elevated in hypertensive patients. American Journal of Hypertension. 2013;26(6):748–753. doi: 10.1093/ajh/hpt007. PubMed DOI
Purevjav E., Varela J., Morgado M., et al. Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. Journal of the American College of Cardiology. 2010;56(18):1493–1502. doi: 10.1016/j.jacc.2010.05.045. PubMed DOI PMC
Aruga J., Yokota N., Mikoshiba K. Human SLITRK family genes: Genomic organization and expression profiling in normal brain and brain tumor tissue. Gene. 2003;315(1-2):87–94. doi: 10.1016/S0378-1119(03)00715-7. PubMed DOI
DeLaughter D. M., Clark C. R., Christodoulou D. C., et al. Transcriptional profiling of cultured, embryonic epicardial cells identifies novel genes and signaling pathways regulated by TGFβR3 in vitro. PLoS ONE. 2016;11(8):p. e0159710. doi: 10.1371/journal.pone.0159710. PubMed DOI PMC
Bigham A. W., Julian C. G., Wilson M. J., et al. Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, And PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiological Genomics. 2014;46(18):687–697. doi: 10.1152/physiolgenomics.00063.2014. PubMed DOI PMC
Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis