New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro

. 2019 ; 2019 () : 6545210. [epub] 20190130

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30834271

The physiological processes that drive the development of ovarian follicle, as well as the process of oogenesis, are quite well known. Granulosa cells are major players in this occurrence, being the somatic element of the female gamete development. They participate directly in the processes of oogenesis, building the cumulus-oocyte complex surrounding the ovum. In addition to that, they have a further impact on the reproductive processes, being a place of steroid sex hormone synthesis and secretion. It is known that the follicle development creates a major need for angiogenesis and blood vessel development in the ovary. In this study, we use novel molecular approaches to analyze markers of these processes in porcine granulosa cultured primarily in vitro. The cells were recovered from mature sus scrofa specimen after slaughter. They were then subjected to enzymatic digestion and culture primarily for a short term. The RNA was extracted from cultures in specific time periods (0h, 24h, 48h, 96h, and 144h) and analyzed using expression microarrays. The genes that exhibited fold change bigger than |2|, and adjusted p-value lower than 0.05, were considered differentially expressed. From these, we have chosen the members of "angiogenesis," "blood vessel development," "blood vessel morphogenesis," "cardiovascular system development," and "vasculature development" for further selection. CCL2, FGFR2, SFRP2, PDPN, DCN, CAV1, CHI3L1, ITGB3, FN1, and LOX which are upregulated, as well as CXCL10, NEBL, IHH, TGFBR3, SCUBE1, IGF1, EDNRA, RHOB, PPARD, and SLITRK5 genes whose expression is downregulated through the time of culture, were chosen as the potential markers, as their expression varied the most during the time of culture. The fold changes were further validated with RT-qPCR. The genes were described, with special attention to their possible function in GCs during culture. The results broaden the general knowledge about GC's in vitro molecular processes and might serve as a point of reference for further in vivo and clinical studies.

Zobrazit více v PubMed

D’Aurora M., Sperduti S., Di Emidio G., Stuppia L., Artini P. G., Gatta V. Inside the granulosa transcriptome. Gynecological Endocrinology. 2016;32(12):951–956. doi: 10.1080/09513590.2016.1223288. PubMed DOI

Kranc W., Budna J., Kahan R., et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. Journal of Biological Regulators and Homeostatic Agents. 2017;31(1):1–8. PubMed

Kranc W., Budna J., Dudek M., et al. The origin, in vitro differentiation, and stemness specificity of progenitor cells. Journal of Biological Regulators and Homeostatic Agents. 2017;31(2):365–369. PubMed

Budna J., Celichowski P., Karimi P., et al. Does porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Advances in Cell Biology. 2017;5(1):1–14. doi: 10.1515/acb-2017-0001. DOI

Lan C., Chen M., Tai K., et al. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling. Scientific Reports. 2015;5(1) doi: 10.1038/srep14994. PubMed DOI PMC

Rybska M., Knap S., Jankowski M., et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Medical Journal of Cell Biology. 2018;6(1):33–38. doi: 10.2478/acb-2018-0006. DOI

Rybska M., Knap S., Jankowski M., et al. Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability. Medical Journal of Cell Biology. 2018;6(1):13–17. doi: 10.2478/acb-2018-0003. DOI

Orisaka M., Tajima K., Tsang B. K., Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. Journal of Ovarian Research. 2009;2(1, article 9) doi: 10.1186/1757-2215-2-9. PubMed DOI PMC

Havelock J. C., Rainey W. E., Carr B. R. Ovarian granulosa cell lines. Molecular and Cellular Endocrinology. 2004;228(1-2):67–78. doi: 10.1016/j.mce.2004.04.018. PubMed DOI

Nawrocki M. J., Celichowski P., Budna J., et al. The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation. Advances in Cell Biology. 2017;5(2):135–142. doi: 10.1515/acb-2017-0012. DOI

Kaczmarek M. M., Schams D., Ziecik A. J. Role of vascular endothelial growth factor in ovarian physiology - an overview. Reproductive Biology and Endocrinology. 2005;5(2):111–36. PubMed

Douglas N. C., Tang H., Gomez R., et al. Vascular endothelial growth factor receptor 2 (VEGFR-2) functions to promote uterine decidual angiogenesis during early pregnancy in the mouse. Endocrinology. 2009;150(8):3845–3854. doi: 10.1210/en.2008-1207. PubMed DOI PMC

Robinson R. S., Woad K. J., Hammond A. J., Laird M., Hunter M. G., Mann G. E. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138(6):869–881. doi: 10.1530/REP-09-0283. PubMed DOI

Trejter M., Hochol A., Tyczewska M., et al. Sex-related gene expression profiles in the adrenal cortex in the mature rat: Microarray analysis with emphasis on genes involved in steroidogenesis. International Journal of Molecular Medicine. 2015;35(3):702–714. doi: 10.3892/ijmm.2015.2064. PubMed DOI PMC

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry. 1987;162(1):156–159. PubMed

Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI

Kordus R. J., LaVoie H. A. Granulosa cell biomarkers to predict pregnancy in ART: Pieces to solve the puzzle. Reproduction. 2017;153(2):R69–R83. doi: 10.1530/REP-16-0500. PubMed DOI

Dzafic E., Stimpfel M., Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. Journal of Assisted Reproduction and Genetics. 2013;30(10):1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC

Chronowska E. High-throughput analysis of ovarian granulosa cell transcriptome. BioMed Research International. 2014;2014:7. doi: 10.1155/2014/213570.213570 PubMed DOI PMC

Dias F. C., Khan M. I., Sirard M. A., Adams G. P., Singh J. Transcriptome analysis of granulosa cells after conventional vs long FSH-induced superstimulation in cattle. BMC Genomics. 2018;19(1) doi: 10.1186/s12864-018-4642-9. PubMed DOI PMC

Fraser H. M., Wulff C. Angiogenesis in the corpus luteum. Reproductive Biology and Endocrinology. 2003;1, article no. 88 doi: 10.1186/1477-7827-1-88. PubMed DOI PMC

Sujka-Kordowska P., Malińska A., Zabel M. Selected aspects of angiogensis in haematological malignancies. Advances in Cell Biology. 2011;2011:165–187.

Konwerska A., Janik B., Malinska A., Witkiewicz W., Zabel M. The contribution of endothelial marker proteins in the determination of vascular angiogenic potential, in normal physiological conditions and in neoplasia. Advances in Cell Biology. 2011;3(4):69–83. doi: 10.2478/v10052-011-0005-2. DOI

Sterzynska K., Sujka-Kordowska P., Witkiewicz W. The most important angiogenic growth factors influencing the development and function of blood vessels - in the context of coronary artery bypass grafting (CABG) Advances in Cell Biology. 2011;3(3):55–67. doi: 10.2478/v10052-011-0004-3. DOI

Knopik-Skrocka A., Krȩplewska P., Jarmołowska-Jurczyszyn D. Tumor blood vessels and vasculogenic mimicry - Current knowledge and searching for new cellular/molecular targets of anti-angiogenic therapy. Advances in Cell Biology. 2017;5(1):50–71. doi: 10.1515/acb-2017-0005. DOI

Peng C., Liu J., Yang G., Li Y. Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression: Quantum dot-based identification of biomarkers in cancer stromal cells. International Journal of Nanomedicine. 2018;13:161–174. doi: 10.2147/IJN.S143871. PubMed DOI PMC

Shindo K., Aishima S., Ohuchida K., et al. Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Molecular Cancer. 2013;12(1) PubMed PMC

Singh P., Carraher C., Schwarzbauer J. E. Assembly of fibronectin extracellular matrix. Annual Review of Cell and Developmental Biology. 2010;26:397–419. doi: 10.1146/annurev-cellbio-100109-104020. PubMed DOI PMC

Chen L. B., Murray A., Segal R. A., Bushnell A., Walsh M. L. Studies on intercellular LETS glycoprotein matrices. Cell. 1978;14(2):377–391. doi: 10.1016/0092-8674(78)90123-X. PubMed DOI

Desgrosellier J. S., Cheresh D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer. 2010;10(1):9–22. doi: 10.1038/nrc2748. PubMed DOI PMC

Vega F. M., Thomas M., Reymond N., Ridley A. J. The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Communication and Signaling. 2015;13(1) PubMed PMC

Gerald D., Adini I., Shechter S., et al. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. Nature Communications. 2013;4, article 2824 doi: 10.1038/ncomms3824. PubMed DOI PMC

Ungvari Z., Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: Recent advances. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2012;67(6):599–610. doi: 10.1093/gerona/gls072. PubMed DOI PMC

Neill T., Schaefer L., Iozzo R. V. Instructive roles of extracellular matrix on autophagy. The American Journal of Pathology. 2014;184(8):2146–2153. doi: 10.1016/j.ajpath.2014.05.010. PubMed DOI PMC

Fiedler L. R., Eble J. A. Decorin regulates endothelial cell-matrix interactions during angiogenesis. Cell Adhesion & Migration. 2009;3(1):3–6. doi: 10.4161/cam.3.1.7275. PubMed DOI PMC

House S. L., Castro A. M., Lupu T. S., et al. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology. 2016;310(5):H559–H571. doi: 10.1152/ajpheart.00758.2015. PubMed DOI PMC

Razani B., Engelman J. A., Wang X. B., et al. Caveolin-1 Null Mice Are Viable but Show Evidence of Hyperproliferative and Vascular Abnormalities. The Journal of Biological Chemistry. 2001;276(41):38121–38138. PubMed

Zhao Y.-Y., Zhao Y. D., Mirza M. K., et al. Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. The Journal of Clinical Investigation. 2009;119(7):2009–2018. doi: 10.1172/jci33338. PubMed DOI PMC

Shao R., Taylor S. L., Oh D. S., Schwartz L. M. Vascular heterogeneity and targeting: the role of YKL-40 in glioblastoma vascularization. Oncotarget . 2015;6(38):40507–40518. doi: 10.18632/oncotarget.5943. PubMed DOI PMC

Courtwright A., Siamakpour-Reihani S., Arbiser J. L., et al. Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Cancer Research. 2009;69(11):4621–4628. doi: 10.1158/0008-5472.CAN-08-3402. PubMed DOI PMC

Takamoto N., Zhao B., Tsai S. Y., DeMayo F. J. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Molecular Endocrinology. 2002;16(10):2338–2348. doi: 10.1210/me.2001-0154. PubMed DOI

Matsumoto H., Zhao X., Das S. K., Hogan B. L. M., Dey S. K. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Developmental Biology. 2002;245(2):280–290. doi: 10.1006/dbio.2002.0645. PubMed DOI

Ozkan G., Ulusoy S., Menteşe A., Karahan S. C., Cansiz M. New marker of platelet activation, SCUBE1, is elevated in hypertensive patients. American Journal of Hypertension. 2013;26(6):748–753. doi: 10.1093/ajh/hpt007. PubMed DOI

Purevjav E., Varela J., Morgado M., et al. Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. Journal of the American College of Cardiology. 2010;56(18):1493–1502. doi: 10.1016/j.jacc.2010.05.045. PubMed DOI PMC

Aruga J., Yokota N., Mikoshiba K. Human SLITRK family genes: Genomic organization and expression profiling in normal brain and brain tumor tissue. Gene. 2003;315(1-2):87–94. doi: 10.1016/S0378-1119(03)00715-7. PubMed DOI

DeLaughter D. M., Clark C. R., Christodoulou D. C., et al. Transcriptional profiling of cultured, embryonic epicardial cells identifies novel genes and signaling pathways regulated by TGFβR3 in vitro. PLoS ONE. 2016;11(8):p. e0159710. doi: 10.1371/journal.pone.0159710. PubMed DOI PMC

Bigham A. W., Julian C. G., Wilson M. J., et al. Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, And PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiological Genomics. 2014;46(18):687–697. doi: 10.1152/physiolgenomics.00063.2014. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis

. 2021 Jun 05 ; 10 (6) : . [epub] 20210605

Cortical Granule Distribution and Expression Pattern of Genes Regulating Cellular Component Size, Morphogenesis, and Potential to Differentiation are Related to Oocyte Developmental Competence and Maturational Capacity In Vivo and In Vitro

. 2020 Jul 17 ; 11 (7) : . [epub] 20200717

Genes regulating hormone stimulus and response to protein signaling revealed differential expression pattern during porcine oocyte in vitro maturation, confirmed by lipid concentration

. 2020 Jul ; 154 (1) : 77-95. [epub] 20200318

The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge

. 2020 Jun 07 ; 9 (6) : . [epub] 20200607

Transcriptomic analysis of expression of genes regulating cell cycle progression in porcine ovarian granulosa cells during short-term in vitro primary culture

. 2020 Jun ; 153 (6) : 397-412. [epub] 20200310

Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers

. 2020 May 21 ; 9 (5) : . [epub] 20200521

Human Ovarian Granulosa Cells Isolated during an IVF Procedure Exhibit Differential Expression of Genes Regulating Cell Division and Mitotic Spindle Formation

. 2019 Nov 20 ; 8 (12) : . [epub] 20191120

New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture-Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles

. 2019 Aug 15 ; 20 (16) : . [epub] 20190815

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...