The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32517362
PubMed Central
PMC7349183
DOI
10.3390/cells9061418
PII: cells9061418
Knihovny.cz E-zdroje
- Klíčová slova
- SIRT1, differentiation, granulosa cells, mesenchymal stem cells, resveratrol,
- MeSH
- biologické modely MeSH
- buněčná diferenciace * účinky léků MeSH
- folikulární buňky cytologie účinky léků metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- resveratrol chemie farmakologie MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- resveratrol MeSH
Ovarian Granulosa Cells (GCs) are known to proliferate in the developing follicle and undergo several biochemical processes during folliculogenesis. They represent a multipotent cell population that has been differentiated to neuronal cells, chondrocytes, and osteoblasts in vitro. However, progression and maturation of GCs are accompanied by a reduction in their stemness. In the developing follicle, GCs communicate with the oocyte bidirectionally via gap junctions. Together with neighboring theca cells, they play a crucial role in steroidogenesis, particularly the production of estradiol, as well as progesterone following luteinization. Many signaling pathways are known to be important throughout the follicle development, leading either towards luteinization and release of the oocyte, or follicular atresia and apoptosis. These signaling pathways include cAMP, PI3K, SMAD, Hedgehog (HH), Hippo and Notch, which act together in a complex manner to control the maturation of GCs through regulation of key genes, from the primordial follicle to the luteal phase. Small molecules such as resveratrol, a phytoalexin found in grapes, peanuts and other dietary constituents, may be able to activate/inhibit these signaling pathways and thereby control physiological properties of GCs. This article reviews the current knowledge about granulosa stem cells, the signaling pathways driving their development and maturation, as well as biological activities of resveratrol and its properties as a pro-differentiation agent.
Zobrazit více v PubMed
Burns J., Yokota T., Ashihara H., Lean M.E., Crozier A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002;50:3337–3340. doi: 10.1021/jf0112973. PubMed DOI
Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006;5:493–506. doi: 10.1038/nrd2060. PubMed DOI
Hao H.D., He L.R. Mechanisms of cardiovascular protection by resveratrol. J. Med. Food. 2004;7:290–298. doi: 10.1089/jmf.2004.7.290. PubMed DOI
Langcake P., Pryce R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant. Pathol. 1976;9:77–86. doi: 10.1016/0048-4059(76)90077-1. DOI
Saiko P., Szakmary A., Jaeger W., Szekeres T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. 2008;658:68–94. doi: 10.1016/j.mrrev.2007.08.004. PubMed DOI
Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI
Kossowska-Tomaszczuk K., De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed. Res. Int. 2013;2013:310859. doi: 10.1155/2013/310859. PubMed DOI PMC
Kossowska-Tomaszczuk K., De Geyter C., De Geyter M., Martin I., Holzgreve W., Scherberich A., Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI
Oki Y., Ono H., Motohashi T., Sugiura N., Nobusue H., Kano K. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem. J. 2012;447:239–248. doi: 10.1042/BJ20120172. PubMed DOI PMC
Dzafic E., Stimpfel M., Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J. Assist. Reprod. Genet. 2013;30:1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC
Grasselli F., Basini G., Tirelli M., Cavalli V., Bussolati S., Tamanini C. Angiogenic activity of porcine granulosa cells co-cultured with endothelial cells in a microcarrier- based three-dimensional fibrin gel. J. Physiol. Pharmacol. 2003;54:361–370. PubMed
Di Benedetto A., Posa F., De Maria S., Ravagnan G., Ballini A., Porro C., Trotta T., Grano M., Muzio L.L., Mori G. Polydatin, Natural Precursor of Resveratrol, Promotes Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Med. Sci. 2018;15:944–952. doi: 10.7150/ijms.24111. PubMed DOI PMC
Rodgers R.J., Lavranos T.C., Rodgers H.F., Young F.M., Vella C.A. The physiology of the ovary: Maturation of ovarian granulosa cells and a novel role for antioxidants in the corpus luteum. J. Steroid. Biochem. Mol. Biol. 1995;53:241–246. doi: 10.1016/0960-0760(95)00054-4. PubMed DOI
Kranc W., Brązert M., Celichowski P., Bryja A., Nawrocki M.J., Ożegowska K., Jankowski M., Jeseta M., Pawelczyk L., Bręborowicz A., et al. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation- a microarray approach. Mol. Med. Rep. 2019;19:1705–1715. doi: 10.3892/mmr.2019.9837. PubMed DOI PMC
Eppig J.J. Reproduction: Oocytes Call, Granulosa Cells Connect. Curr. Biol. 2018;28:354–356. doi: 10.1016/j.cub.2018.03.005. PubMed DOI
Teh A., Izzati U.Z., Mori K., Fuke N., Hirai T., Kitahara G., Yamaguchi R. Histological and immunohistochemical evaluation of granulosa cells during different stages of folliculogenesis in bovine ovaries. Reprod. Domest. Anim. 2018;53:569–581. doi: 10.1111/rda.13132. PubMed DOI
Zhou J., Peng X., Mei S. Autophagy in ovarian follicular development and Atresia. Int. J. Biol. Sci. 2019;15:726–737. doi: 10.7150/ijbs.30369. PubMed DOI PMC
Chermuła B., Brązert M., Iżycki D., Ciesiółka S., Kranc W., Celichowski P., Ożegowska K., Nawrocki M.J., Jankowski M., Jeseta M., et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro. Biomed. Res. Int. 2019;2019:6545210. doi: 10.1155/2019/6545210. PubMed DOI PMC
Piprek R.P. Molecular Mechanisms of Cell Differentiation in Gonad Development. 1st ed. Springer International Publishing; Cham, Switzerland: 2016.
Kranc W., Chachuła A., Bryja A., Ciesiółka S., Budna J., Wojtanowicz-Markiewicz K., Sumelka E., Borys S., Antosik P., Bukowska D., et al. Selected molecular and physiological aspects of mammalian ovarian granulosa cells in primary culture. Med. Weter. 2016;72:723–727. doi: 10.21521/mw.5606. DOI
Mora J.M., Fenwick M.A., Castle L., Baithun M., Ryder T.A., Mobberley M., Carzaniga R., Franks S., Hardy K. Characterization and Significance of Adhesion and Junction-Related Proteins in Mouse Ovarian Follicles. Biol. Reprod. 2012;86:1–14. doi: 10.1095/biolreprod.111.096156. PubMed DOI
Wigglesworth K., Lee K.B., Emori C., Sugiura K., Eppig J.J. Transcriptomic Diversification of Developing Cumulus and Mural Granulosa Cells in Mouse Ovarian Follicles. Biol. Reprod. 2015;92:1–14. doi: 10.1095/biolreprod.114.121756. PubMed DOI PMC
Murphy B.D. Models of luteinization. Biol. Reprod. 2000;63:2–11. doi: 10.1095/biolreprod63.1.2. PubMed DOI
Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models. Theriogenology. 2016;86:41–53. doi: 10.1016/j.theriogenology.2016.04.017. PubMed DOI
Andrei D., Nagy R.A., van Montfoort A., Tietge U., Terpstra M., Kok K., van den Berg A., Hoek A., Kluiver J., Donker R. Differential miRNA Expression Profiles in Cumulus and Mural Granulosa Cells from Human Pre-ovulatory Follicles. MicroRNA. 2019;8:61–67. doi: 10.2174/2211536607666180912152618. PubMed DOI PMC
Bowdridge E.C., Vernon M.W., Flores J.A., Clemmer M.J. In vitro progesterone production by luteinized human mural granulosa cells is modulated by activation of AMPK and cause of infertility. Reprod. Biol. Endocrinol. 2017;15:1–8. doi: 10.1186/s12958-017-0295-9. PubMed DOI PMC
Orlowski M., Sarao M.S. Physiology, Follicle Stimulating Hormone. StatPearls Publishing; Treasure Island, FL, USA: 2020. PubMed
Bertoldo M.J., Cheung M.Y., Sia Z.K., Agapiou D., Corley S.M., Wilkins M.R., Richani D., Harrison C.A., Gilchrist R.B. Non-canonical cyclic AMP SMAD1/5/8 signalling in human granulosa cells. Mol. Cell. Endocrinol. 2019;490:37–46. doi: 10.1016/j.mce.2019.04.003. PubMed DOI
Sacchi S., D’Ippolito G., Sena P., Marsella T., Tagliasacchi D., Maggi E., Argento C., Tirelli A., Giulini S., La Marca A. The anti-Müllerian hormone (AMH) acts as a gatekeeper of ovarian steroidogenesis inhibiting the granulosa cell response to both FSH and LH. J. Assist. Reprod. Genet. 2016;33:95–100. doi: 10.1007/s10815-015-0615-y. PubMed DOI PMC
Cai L., Sun A., Li H., Tsinkgou A., Yu J., Ying S., Chen Z., Shi Z. Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatment in vitro with anti-inhibin alpha subunit antibody. Reprod. Biol. Endocrinol. 2015;13:1–10. doi: 10.1186/s12958-015-0022-3. PubMed DOI PMC
Myers M., Middlebrook B.S., Matzuk M.M., Pangas S.A. Loss of inhibin alpha uncouples oocyte-granulosa cell dynamics and disrupts postnatal folliculogenesis. Dev. Biol. 2009;334:458–467. doi: 10.1016/j.ydbio.2009.08.001. PubMed DOI PMC
Liu C., Peng J., Matzuk M.M., Yao H.H. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat. Commun. 2015;6:6934. doi: 10.1038/ncomms7934. PubMed DOI PMC
Miyoshi T., Otsuka F., Suzuki J., Takeda M., Inagaki K., Kano Y., Otani H., Mimura Y., Ogura T., Makino H. Mutual regulation of follicle-stimulating hormone signaling and bone morphogenetic protein system in human granulosa cells. Biol. Reprod. 2006;74:1073–1082. doi: 10.1095/biolreprod.105.047969. PubMed DOI
Prasasya R.D., Mayo K.E. Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells. Endocrinology. 2018;159:184–198. doi: 10.1210/en.2017-00677. PubMed DOI PMC
Plewes M.R., Cordes C., Przgrodzka E., Talbott H., Woods J., Cupp A.S., Davis J.S. Trafficking of Cholesterol from Lipid Droplets to Mitochondria in Bovine Luteal Cells: Acute Control of Progesterone Synthesis. BioRxiv. 2018:409599. doi: 10.1101/409599. PubMed DOI PMC
Kawashima I., Kawamura K. Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Syst. Biol. Reprod. Med. 2018;64:3–11. doi: 10.1080/19396368.2017.1411990. PubMed DOI
Baumgarten S.C., Convissar S.M., Zamah A.M., Fierro M.A., Winston N.J., Scoccia B., Stocco C. FSH Regulates IGF-2 Expression in Human Granulosa Cells in an AKT-Dependent Manner. J. Clin. Endocrinol. Metab. 2015;100:1046–1055. doi: 10.1210/jc.2015-1504. PubMed DOI PMC
Hobeika E., Armouti M., Kala H., Fierro M.A., Winston N.J., Scoccia B., Zamah A.M., Stocco C. Oocyte-Secreted Factors Synergize with FSH to Promote Aromatase Expression in Primary Human Cumulus Cells. J. Clin. Endocrinol. Metab. 2019;104:1667–1676. doi: 10.1210/jc.2018-01705. PubMed DOI PMC
Birbrair A. Stem Cells Heterogeneity in Different Organs. Springer International Publishing; Cham, Switzerland: 2019.
Hoang S.N., Ho C.N.Q., Nguyen T.T.P., Doan C.C., Tran D.H., Le L.T. Evaluation of stemness marker expression in bovine ovarian granulosa cells. Anim. Reprod. 2019;16:277–281. doi: 10.21451/1984-3143-AR2018-0083. PubMed DOI PMC
Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI
Furukawa K., Fujiwara H., Sato Y., Zeng B.X., Fujii H., Yoshioka S., Nishi E., Nishio T. Platelets are novel regulators of neovascularization and luteinization during human corpus luteum formation. Endocrinology. 2007;148:3056–3064. doi: 10.1210/en.2006-1687. PubMed DOI
Basini G., Bussolati S., Grolli S., Ramoni R., Conti V., Quintavalla F., Grasselli F. Platelets are involved in in vitro swine granulosa cell luteinization and angiogenesis. Anim. Reprod. Sci. 2018;188:51–56. doi: 10.1016/j.anireprosci.2017.11.008. PubMed DOI
Bezerra M.É.S., Gouveia B.B., Barberino R.S., Menezes V.G., Macedo T.J.S., Cavalcante A.Y.P., Monte A.P.O., Santos J.M.S., Matos M.H.T. Resveratrol promotes in vitro activation of ovine primordial follicles by reducing DNA damage and enhancing granulosa cell proliferation via phosphatidylinositol 3-kinase pathway. Reprod. Domest. Anim. 2018;53:1298–1305. doi: 10.1111/rda.13274. PubMed DOI
Hunzicker-Dunn M., Maizels E.T. FSH signaling pathways in immature granulosa cells that regulate target gene expression: Branching out from protein kinase A. Cell. Signal. 2006;18:1351–1359. doi: 10.1016/j.cellsig.2006.02.011. PubMed DOI PMC
Schubert R., Fischer R., Hain R., Schreier P.H., Bahnweg G., Ernst D., Sandermann H., Jr. An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol. Biol. 1997;34:417–426. doi: 10.1023/A:1005830714852. PubMed DOI
Hain R., Reif H.J., Krause E., Langebartels R., Kindl H., Vornam B., Wiese W., Schmelze E., Schreier P.H., Stöcker R.H., et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature. 1993;361:153–156. doi: 10.1038/361153a0. PubMed DOI
Roberti M., Pizzirani D., Simoni D., Rondanin R., Baruchello R., Bonora C., Buscemi F., Grimaudo S., Tolomeo M. Synthesis and Biological Evaluation of Resveratrol and Analogues as Apoptosis-Inducing Agents. J. Med. Chem. 2003;46:3546–3554. doi: 10.1021/jm030785u. PubMed DOI
Ko J.H., Sethi G., Um J.Y., Shanmugam M.K., Arfuso F., Kumar A.P., Bishayee A., Ahn K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 2017;18:2589. doi: 10.3390/ijms18122589. PubMed DOI PMC
Mukherjee S., Dudley J.I., Das D.K. Dose-Dependency of Resveratrol in Providing Health Benefits. Dose-Response. 2010;8:478–500. doi: 10.2203/dose-response.09-015.Mukherjee. PubMed DOI PMC
Wang H., Jiang T., Li W., Gao N., Zhang T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol. Lett. 2018;282:100–108. doi: 10.1016/j.toxlet.2017.10.021. PubMed DOI
Gomes B.A.Q., Silva J.P.B., Romeiro C.F.R., Dos Santos S.M., Rodrigues C.A., Rodrigues Gonçalves P., Sakai J.T., Mendes P.F.S., Varela E.L.P., Monteiro M.C. Neuroprotective Mechanisms of Resveratrol in Alzheimer’s Disease: Role of SIRT1. Oxid. Med. Cell. Longev. 2018:8152373. doi: 10.1155/2018/8152373. PubMed DOI PMC
Chen J., Zhou Y., Mueller-Steiner S., Chen L.F., Kwon H., Yi S., Mucke L., Gan L. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem. 2005;280:40364–40374. doi: 10.1074/jbc.M509329200. PubMed DOI
Zhang L.F., Yu X.L., Ji M., Liu S.Y., Wu X.L., Wang Y.J., Liu R.T. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct. 2018;9:6414–6426. doi: 10.1039/C8FO00964C. PubMed DOI
Xia D., Sui R., Zhang Z. Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J. Cell Biochem. 2019;120:4942–4951. doi: 10.1002/jcb.27769. PubMed DOI
Lin K.L., Lin K.J., Wang P.W., Chuang J.H., Lin H.Y., Chen S.D., Chuang Y.C., Huang S.T., Tiao M.M., Chen J.B., et al. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic. Res. 2018;52:1371–1386. doi: 10.1080/10715762.2018.1489128. PubMed DOI
Naia L., Rosenstock T.R., Oliveira A.M., Oliveira-Sousa S.I., Caldeira G.L., Carmo C., Laço M.N., Hayden M.R., Oliveira C.R., Rego A.C. ComparativeMitochondrial-Based Protective Effects of Resveratrol and Nicotinamide in Huntington’s Disease Models. Mol. Neurobiol. 2017;54:5385–5399. doi: 10.1007/s12035-016-0048-3. PubMed DOI
Wang Z., Gu J., Wang X., Xie K., Luan Q., Wan N., Zhang Q., Jiang H., Liu D. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: The HPA axis, BDNF expression and phosphorylation of ERK. Pharmacol. Biochem. Behav. 2013;112:104–110. doi: 10.1016/j.pbb.2013.10.007. PubMed DOI
Iiu S., Li T., Liu H., Wang X., Bo S., Xie Y., Bai X., Wu L., Wang Z., Liu D. Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex. Behav. Brain Res. 2016;302:191–199. doi: 10.1016/j.bbr.2016.01.037. PubMed DOI
Granados-Soto V., Argüelles C.F., Ortiz M.I. The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology. 2002;43:917–923. doi: 10.1016/S0028-3908(02)00130-2. PubMed DOI
Torres-López J.E., Ortiz M.I., Castañeda-Hernández G., Alonso-López R., Asomoza-Espinosa R., Granados-Soto V. Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. Life Sci. 2002;70:1669–1676. doi: 10.1016/S0024-3205(02)01491-1. PubMed DOI
Goh K.P., Lee H.Y., Lau D.P., Supaat W., Chan Y.H., Koh A.F. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. Int. J. Sport Nutr. Exerc. Metab. 2014;24:2–13. doi: 10.1123/ijsnem.2013-0045. PubMed DOI
Norouzzadeh M., Amiri F., Saboor-Yaraghi A.A., Shemirani F., Kalikias Y., Sharifi L., Seyyedsalehi M.S., Mahmoudi M. Does Resveratrol Improve Insulin Signalling in HepG2 Cells? Can. J. Diabetes. 2017;41:211–216. doi: 10.1016/j.jcjd.2016.09.015. PubMed DOI
Zarei S., Saidijam M., Karimi J., Yadegarazari R., Farimani A.R., Hosseini-Zijoud S.S., Goodarzi M.T. Effect of resveratrol on resistin and apelin gene expressions in adipose tissue of diabetic rats. Turk. J. Med. Sci. 2016;46:1561–1567. doi: 10.3906/sag-1505-6. PubMed DOI
Brasnyó P., Molnár G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei A., Halmai R., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106:383–389. doi: 10.1017/S0007114511000316. PubMed DOI
Movahed A., Nabipour I., Lieben Louis X., Thandapilly S.J., Yu L., Kalantarhormozi M., Rekabpour S.J., Netticadan T. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid. Based Complement. Alternat. Med. 2013;2013:851267. doi: 10.1155/2013/851267. PubMed DOI PMC
Chang C.C., Lin K.Y., Peng K.Y., Day Y.J., Hung L.M. Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr. J. 2016;63:169–178. doi: 10.1507/endocrj.EJ15-0545. PubMed DOI
Zhang A.J., Rimando A.M., Mizuno C.S., Mathews S.T. α-Glucosidase inhibitory effect of resveratrol and piceatannol. J. Nutr. Biochem. 2017;47:86–93. doi: 10.1016/j.jnutbio.2017.05.008. PubMed DOI
Bird J.K., Raederstorff D., Weber P., Steinert R.E. Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota. Adv. Nutr. 2017;8:839–849. doi: 10.3945/an.117.016568. PubMed DOI PMC
Konings E., Timmers S., Boekschoten M.V., Goossens G.H., Jocken J.W., Afman L.A., Müller M., Schrauwen P., Mariman E.C., Blaak E.E. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int. J. Obes. 2014;38:470–473. doi: 10.1038/ijo.2013.155. PubMed DOI
Thompson A.M., Martin K.A., Rzucidlo E.M. Resveratrol Induces Vascular Smooth Muscle Cell Differentiation through Stimulation of SirT1 and AMPK. PLoS ONE. 2014;9:1–10. doi: 10.1371/journal.pone.0085495. PubMed DOI PMC
Peltz L., Gomez J., Marquez M., Alencastro F., Atashpanjeh N., Quang T., Bach T., Zhao Y. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS ONE. 2012;7:e37162. doi: 10.1371/journal.pone.0037162. PubMed DOI PMC
Bäckesjö C.M., Li Y., Lindgren U., Haldosén L.A. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J. Bone Mine Res. 2006;21:993–1002. doi: 10.1359/jbmr.060415. PubMed DOI
Song L.H., Pan W., Yu Y.H., Quarles L.D., Zhou H.H., Xiao Z.S. Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol. In Vitro. 2006;20:915–922. doi: 10.1016/j.tiv.2006.01.016. PubMed DOI
Dai Z., Li Y., Quarles L.D., Song T., Pan W., Zhou H., Xiao Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine. 2007;14:806–814. doi: 10.1016/j.phymed.2007.04.003. PubMed DOI
Zhao X.E., Yang Z., Zhang H., Yao G., Liu J., Wei Q., Ma B. Resveratrol Promotes Osteogenic Differentiation of Canine Bone Marrow Mesenchymal Stem Cells Through Wnt/Beta-Catenin Signaling Pathway. Cell. Reprogram. 2018;20:371–381. doi: 10.1089/cell.2018.0032. PubMed DOI
Wang X., Ma S., Meng N., Yao N., Zhang K., Li Q., Zhang Y., Xing Q., Han K., Song J., et al. Resveratrol Exerts Dosage-Dependent Effects on the Self-Renewal and Neural Differentiation of hUC-MSCs. Mol. Cells. 2016;39:418–425. doi: 10.14348/molcells.2016.2345. PubMed DOI PMC
Guo L., Wang L., Wang L., Yun-Peng S., Zhou J.J., Zhao Z., Li D.P. Resveratrol Induces Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Neuron-Like Cells. Stem Cells Int. 2017;2017:1651325. doi: 10.1155/2017/1651325. PubMed DOI PMC
Hu P., Zhao L., Chen J. Physiologically achievable doses of resveratrol enhance 3T3-L1 adipocyte differentiation. Eur. J. Nutr. 2014;54:569–579. doi: 10.1007/s00394-014-0738-4. PubMed DOI
Ortega I., Duleba A.J. Ovarian actions of resveratrol. Ann. N. Y. Acad. Sci. 2015;1348:86–96. doi: 10.1111/nyas.12875. PubMed DOI
Tatone C., Di Emidio G., Vitti M., Di Carlo M., Santini S.J., D’Alessandro A.M., Falone S., Amicarelli F. Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxid. Med. Cell. Longev. 2015;2015:659687. doi: 10.1155/2015/659687. PubMed DOI PMC
Pucci B., Villanova L., Sansone L., Pellegrini L., Tafani M., Carpi A., Fini M., Russo M.A. Sirtuins: The molecular basis of beneficial effects of physical activity. Intern. Emerg. Med. 2013;8:23–25. doi: 10.1007/s11739-013-0920-3. PubMed DOI
Lee D., Goldberg A.L. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J. Biol. Chem. 2013;288:30515–30526. doi: 10.1074/jbc.M113.489716. PubMed DOI PMC
Morita Y., Wada-Hiraike O., Yano T., Shirane A., Hirano M., Hiraike H., Koyama S., Oishi H., Yoshino O., Miyamoto Y., et al. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: An implicative role of SIRT1 in the ovary. Reprod. Biol. Endocrinol. 2012;10:1–10. doi: 10.1186/1477-7827-10-14. PubMed DOI PMC
Han Y., Luo H., Wang H., Cai J., Zhang Y. SIRT1 induces resistance to apoptosis in human granulosa cells by activating the ERK pathway and inhibiting NF-κB signaling with anti-inflammatory functions. Apoptosis. 2017;22:1260–1272. doi: 10.1007/s10495-017-1386-y. PubMed DOI
Benayoun B.A., Georges A.B., L’Hôte D., Andersson N., Dipietromaria A., Todeschini A.L., Caburet S., Bazin C., Anttonen M., Veitia R.A. Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: Role of its regulation by the SIRT1 deacetylase. Hum. Mol. Genet. 2011;20:1673–1686. doi: 10.1093/hmg/ddr042. PubMed DOI
Pavlová S., Klucska K., Vašíček D., Ryban L., Harrath A.H., Alwasel S.H., Sirotkin A.V. The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim. Reprod. Sci. 2013;140:180–188. doi: 10.1016/j.anireprosci.2013.06.013. PubMed DOI
Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang L.L., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–196. doi: 10.1038/nature01960. PubMed DOI
Hou X., Rooklin D., Fang H., Zhang Y. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci. Rep. 2016;6:38186. doi: 10.1038/srep38186. PubMed DOI PMC
Wang F., Tian X., Zhang L., He C., Ji P., Li Y., Tan D., Liu G. Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertil. Steril. 2014;101:577–586. doi: 10.1016/j.fertnstert.2013.10.041. PubMed DOI
Park S.J., Ahmad F., Philp A., Baar K., Williams T., Luo H., Ke H., Rehmann H., Taussig R., Brown A.L., et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148:421–433. doi: 10.1016/j.cell.2012.01.017. PubMed DOI PMC
Gerszon J., Rodacka A., Puchała M. Antioxidant Properties of Resveratrol and its Protective Effects in Neurodegenerative Diseases. J. Cell Biol. 2014;4:97–117. doi: 10.2478/acb-2014-0006. DOI
Hao J., Tuck A.R., Sjödin M.O.D., Lindberg J., Sand A., Niklasson B., Argyraki M., Hovatta O., Damdimopoulou P. Resveratrol supports and alpha-naphthoflavone disrupts growth of human ovarian follicles in an in vitro tissue culture model. Toxicol. Appl. Pharmacol. 2018;338:73–82. doi: 10.1016/j.taap.2017.11.009. PubMed DOI
Liu M., Yin Y., Ye X., Zeng M., Zhao Q., Keefe D.L., Liu L. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 2013;28:707–717. doi: 10.1093/humrep/des437. PubMed DOI
Chen Z.G., Luo L.L., Xu J.J., Zhuang X.L., Kong X.X., Fu Y.C. Effects of plant polyphenols on ovarian follicular reserve in aging rats. Biochem. Cell. Biol. 2010;88:737–745. doi: 10.1139/O10-012. PubMed DOI
Banu S.K., Stanley J.A., Sivakumar K.K., Arosh J.A., Burghardt R.C. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol. Toxicol. Appl. Pharmacol. 2016;303:65–78. doi: 10.1016/j.taap.2016.04.016. PubMed DOI PMC
Li N., Liu L. Mechanism of resveratrol in improving ovarian function in a rat model of premature ovarian insufficiency. J. Obstet. Gynaecol. Res. 2018;44:1431–1438. doi: 10.1111/jog.13680. PubMed DOI
Chen Q., Ganapathy S., Singh K.P., Shankar S., Srivastava R.K. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS ONE. 2010;5:15288. doi: 10.1371/journal.pone.0015288. PubMed DOI PMC
Ortega I., Wong D.H., Villanueva J.A., Cress A.B., Sokalska A., Stanley S.D., Duleba A.J. Effects of resveratrol on growth and function of rat ovarian granulosa cells. Fertil. Steril. 2012;98:1563–1573. doi: 10.1016/j.fertnstert.2012.08.004. PubMed DOI PMC
Lee S., Jin J.X., Taweechaipaisankul A., Kim G.A., Ahn C., Lee B.C. Sonic hedgehog signaling mediates resveratrol to improve maturation of pig oocytes in vitro and subsequent preimplantation embryo development. J. Cell. Physiol. 2018;233:5023–5033. doi: 10.1002/jcp.26367. PubMed DOI
Wong D.H., Villanueva J.A., Cress A.B., Duleba A.J. Effects of resveratrol on proliferation and apoptosis in rat ovarian theca-interstitial cells. Mol. Hum. Reprod. 2010;16:251–259. doi: 10.1093/molehr/gaq002. PubMed DOI PMC
Schube U., Nowicki M., Jogschies P., Blumenauer V., Bechmann I., Serke H. Resveratrol and desferoxamine protect human OxLDL-treated granulosa cell subtypes from degeneration. J. Clin. Endocrinol. Metab. 2014;99:229–239. doi: 10.1210/jc.2013-2692. PubMed DOI
Furat Rencber S., Kurnaz Ozbek S., Eraldemır C., Sezer Z., Kum T., Ceylan S., Guzel E. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: An experimental study. J. Ovarian Res. 2018;11:55. doi: 10.1186/s13048-018-0427-7. PubMed DOI PMC
Banaszewska B., Wrotyńska-Barczyńska J., Spaczynski R.Z., Pawelczyk L., Duleba A.J. Effects of Resveratrol on Polycystic Ovary Syndrome: A Double-blind, Randomized, Placebo-controlled Trial. J. Clin. Endocrinol. Metab. 2016;101:4322–4328. doi: 10.1210/jc.2016-1858. PubMed DOI
Brenjian S., Moini A., Yamini N., Kashani L., Faridmojtahedi M., Bahramrezaie M., Khodarahmian M., Amidi F. Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am. J. Reprod. Immunol. 2020;83:13186. doi: 10.1111/aji.13186. PubMed DOI
Kelly C.C., Lyall H., Petrie J.R., Gould G.W., Connell J.M., Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 2001;86:2453–2455. doi: 10.1210/jcem.86.6.7580. PubMed DOI
Duleba A.J., Dokras A. Is PCOS an inflammatory process? Fertil. Steril. 2012;97:7–12. doi: 10.1016/j.fertnstert.2011.11.023. PubMed DOI PMC
Bahramrezaie M., Amidi F., Aleyasin A., Saremi A., Aghahoseini M., Brenjian S., Khodarahmian M., Pooladi A. Effects of resveratrol on VEGF & HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: A triple-blind randomized clinical trial. J. Assist. Reprod. Genet. 2019;36:1701–1712. doi: 10.1007/s10815-019-01461-6. PubMed DOI PMC
Bausenwein J., Serke H., Eberle K., Hirrlinger J., Jogschies P., Abu F., Hmeidan A., Blumenauer V., Spanel-Borowski K. Elevated levels of oxidized low-density lipoprotein and of catalase activity in follicular fluid of obese women. Mol. Hum. Reprod. 2010;16:117–124. doi: 10.1093/molehr/gap078. PubMed DOI
Serke H., Bausenwein J., Hirrlinger J., Nowicki M., Vilser C., Jogschies P., Hmeidan F.A., Blumenauer V., Spanel-Borowski K. Granulosa cell subtypes vary in response to oxidized low-density lipoprotein as regards specific lipoprotein receptors and antioxidant enzyme activity. J. Clin. Endocrinol. Metab. 2010;95:3480–3490. doi: 10.1210/jc.2009-2654. PubMed DOI
Sharma S.C., Clemens J.W., Pisarska M.D., Richards J.S. Expression and function of estrogen receptor subtypes in granulosa cells: Regulation by estradiol and forskolin. Endocrinology. 1999;140:4320–4334. doi: 10.1210/endo.140.9.6965. PubMed DOI
Solak K.A., Wijnolts F.M.J., Nijmeijer S.M., Blaauboer B.J., van den Berg M., van Duursen M.B.M. Excessive levels of diverse phytoestrogens can modulate steroidogenesis and cell migration of KGN human granulosa-derived tumor cells. Toxicol. Rep. 2014;1:360–372. doi: 10.1016/j.toxrep.2014.06.006. PubMed DOI PMC
Clark B.J., Wells J., King S.R., Stocco D.M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR) J. Biol. Chem. 1994;269:28314–28322. PubMed
Clark B.J., Stocco D.M. Steroidogenic acute regulatory protein: The StAR still shines brightly. Mol. Cell. Endocrinol. 1997;134:1–8. doi: 10.1016/S0303-7207(97)00166-4. PubMed DOI
Kiriakidou M., McAllister J.M., Sugawara T., Strauss J.F., 3rd Expression of steroidogenic acute regulatory protein (StAR) in the human ovary. J. Clin. Endocrinol. Metab. 1996;81:4122–4128. doi: 10.1210/jcem.81.11.8923870. PubMed DOI
Walle T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011;1215:9–15. doi: 10.1111/j.1749-6632.2010.05842.x. PubMed DOI
Smoliga J.M., Blanchard O. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution? Molecules. 2014;19:17154–17172. doi: 10.3390/molecules191117154. PubMed DOI PMC
Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Jr., Walle U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI
Basini G., Tringali C., Baioni L., Bussolati S., Spatafora C., Grasselli F. Biological effects on granulosa cells of hydroxylated and methylated resveratrol analogues. Mol. Nutr. Food Res. 2010;54:236–243. doi: 10.1002/mnfr.200900320. PubMed DOI