Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
2018/31/B/NZ5/02475
Narodowe Centrum Nauki
PubMed
34198768
PubMed Central
PMC8229878
DOI
10.3390/cells10061396
PII: cells10061396
Knihovny.cz E-zdroje
- Klíčová slova
- cumulus cells, follicular angiogenesis, granulosa cells, miRNA, stem cells, translational medicine,
- MeSH
- fyziologická neovaskularizace * MeSH
- kmenové buňky metabolismus MeSH
- kumulární buňky metabolismus MeSH
- lidé MeSH
- primární ovariální insuficience metabolismus MeSH
- syndrom polycystických ovarií metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte's proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.
Department of Anatomy Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Toxicology Poznan University of Medical Sciences 60 631 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27607 USA
The School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen AB25 2ZD UK
Zobrazit více v PubMed
Ndefo U.A., Eaton A., Green M.R. Polycystic ovary syndrome: A review of treatment options with a focus on pharmacological approaches. P T. 2013;38:336–355. PubMed PMC
Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr. Stem Cell Res. Ther. 2019;15:473–481. doi: 10.2174/1574888X14666190314123006. PubMed DOI
Rybska M., Knap S., Jankowski M., Borowiec B., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., et al. Pathogenesis and pathophysiology of ovarian follicular cysts in mammals. Med. J. Cell Biol. 2018;6:120–124. doi: 10.2478/acb-2018-0019. DOI
Zhang T., Lee W.Y.W., Rui Y.F., Cheng T.Y., Jiang X.H., Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res. Ther. 2013;4 doi: 10.1093/annonc/mdt047.9. PubMed DOI PMC
Song Y., Du H., Dai C., Zhang L., Li S., Hunter D.J., Lu L., Bao C. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen. Med. 2018;13:295–307. doi: 10.2217/rme-2017-0152. PubMed DOI
Can A., Celikkan F.T., Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy. 2017;19:1351–1382. doi: 10.1016/j.jcyt.2017.08.004. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The Development of Fibroblast Colonies in Monolayer Cultures of Guinea-Pig Bone Marrow and Spleen Cells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x. PubMed DOI
Kossowska-Tomaszczuk K., De Geyter C., De Geyter M., Martin I., Holzgreve W., Scherberich A., Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI
Weidner N., Cote R.J., Suster S., Weiss L.M. Modern Surgical Pathology. Saunders; Philadelphia, PA, USA: 2009.
Gougeon A. Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocr. Rev. 1996;17:121–155. doi: 10.1210/edrv-17-2-121. PubMed DOI
Uyar A., Torrealday S., Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 2013;99:979–997. doi: 10.1016/j.fertnstert.2013.01.129. PubMed DOI PMC
McGee E.A., Hsueh A.J.W. Initial and Cyclic Recruitment of Ovarian Follicles*. Endocr. Rev. 2000;21:200–214. doi: 10.1210/er.21.2.200. PubMed DOI
Da Silva-Buttkus P., Jayasooriya G.S., Mora J.M., Mobberley M., Ryder T.A., Baithun M., Stark J., Franks S., Hardy K. Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J. Cell Sci. 2008;121:3890–3900. doi: 10.1242/jcs.036400. PubMed DOI
Shah J.S., Sabouni R., Cayton Vaught K.C., Owen C.M., Albertini D.F., Segars J.H. Biomechanics and mechanical signaling in the ovary: A systematic review. J. Assist. Reprod. Genet. 2018;35:1135–1148. doi: 10.1007/s10815-018-1180-y. PubMed DOI PMC
Kossowska-Tomaszczuk K., De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res. Int. 2013;2013:310859. doi: 10.1155/2013/310859. PubMed DOI PMC
Findlay J.K., Kerr J.B., Britt K., Liew S.H., Simpson E.R., Rosairo D., Drummond A. Ovarian physiology: Follicle development, oocyte and hormone relationships. Anim. Reprod. 2009;6:16–19.
Nguyen T., Lee S., Hatzirodos N., Hummitzsch K., Sullivan T.R., Rodgers R.J., Irving-Rodgers H.F. Spatial differences within the membrana granulosa in the expression of focimatrix and steroidogenic capacity. Mol. Cell. Endocrinol. 2012;363:62–73. doi: 10.1016/j.mce.2012.07.009. PubMed DOI
Kranc W., Chachula A., Wojtanowicz-Markiewicz K., Ciesiólka S., Ociepa E., Bukowska D., Borys S., Piotrowska H., Bryja A., Antosik P., et al. The Insight into Developmental Capacity of Mammalian Cocs and Cumulus-Granulosa Cells-Recent Studies and Perspectives. Austin J. Invit. Fertilzation. 2015;2:1023.
Fraser H.M., Wulff C. Angiogenesis in the corpus luteum. Reprod. Biol. Endocrinol. 2003;1:88. doi: 10.1186/1477-7827-1-88. PubMed DOI PMC
Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI
Kałuzna S., Bryl R., Chermuła B., Sibiak R., Stefańska K., Pieńkowski W., Kranc W., Jeseta M., Ventruba P., Zakova J., et al. Expression of genes involved in the inflammatory response in human granulosa cells in short-term in vitro culture. Med. J. Cell Biol. 2020;8:190–195. doi: 10.2478/acb-2020-0025. DOI
Erickson G.F., Hofeditz C., Unger M., Allen W.R., Dulbecco R. A monoclonal antibody to a mammary cell line recognizes two distinct subtypes of ovarian granulosa cells. Endocrinology. 1985;117:1490–1499. doi: 10.1210/endo-117-4-1490. PubMed DOI
Plancha C.E., Sanfins A., Rodrigues P., Albertini D. Cell polarity during folliculogenesis and oogenesis. Reprod. Biomed. Online. 2005;10:478–484. doi: 10.1016/S1472-6483(10)60824-3. PubMed DOI
Saeed-Zidane M., Linden L., Salilew-Wondim D., Held E., Neuhoff C., Tholen E., Hoelker M., Schellander K., Tesfaye D. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0187569. PubMed DOI PMC
Mora J.M., Fenwick M.A., Castle L., Baithun M., Ryder T.A., Mobberley M., Carzaniga R., Franks S., Hardy K. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol. Reprod. 2012;86:1–14. doi: 10.1095/biolreprod.111.096156. PubMed DOI
Vanderhyden B.C., Tonary A.M. Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulosa cells by a factor(s) secreted by the oocyte. Biol. Reprod. 1995;53:1243–1250. doi: 10.1095/biolreprod53.6.1243. PubMed DOI
Kranc W., Budna J., Kahan R., Chachuła A., Bryja A., Ciesiółka S., Borys S., Antosik M.P., Bukowska D., Brussow K.P., et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J. Biol. Regul. Homeost. Agents. 2017;31:1–8. PubMed
Rodgers R.J., Lavranos T.C., Van Wezel I.L., Irving-Rodgers H.F. Development of the ovarian follicular epithelium. Mol. Cell. Endocrinol. 1999;151:171–179. doi: 10.1016/S0303-7207(99)00087-8. PubMed DOI
Jagarlamudi K., Rajkovic A. Oogenesis: Transcriptional regulators and mouse models. Mol. Cell. Endocrinol. 2012;356:31–39. doi: 10.1016/j.mce.2011.07.049. PubMed DOI
Lan C.-W., Chen M.-J., Jan P.-S., Chen H.-F., Ho H.-N. Differentiation of Human Embryonic Stem Cells Into Functional Ovarian Granulosa-like Cells. J. Clin. Endocrinol. Metab. 2013;98:3713–3723. doi: 10.1210/jc.2012-4302. PubMed DOI
Bowen N.J., Walker L.D., Matyunina L.V., Logani S., Totten K.A., Benigno B.B., McDonald J.F. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med. Genomics. 2009;2:71. doi: 10.1186/1755-8794-2-71. PubMed DOI PMC
Virant-Klun I., Skutella T., Stimpfel M., Sinkovec J. Ovarian surface epithelium in patients with severe ovarian infertility: A potential source of cells expressing markers of pluripotent/multipotent stem cells. J. Biomed. Biotechnol. 2011;2011:381928. doi: 10.1155/2011/381928. PubMed DOI PMC
Bhartiya D., Patel H. Ovarian stem cells—resolving controversies. J. Assist. Reprod. Genet. 2018;35:393–398. doi: 10.1007/s10815-017-1080-6. PubMed DOI PMC
Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. Med. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI
Moncrieff L., Mozdziak P., Jeseta M., Machatkova M., Kranc W., Kempisty B. Ovarian follicular cells—Living in the shadow of stemness cellular competence. Med. J. Cell Biol. 2019;7:134–140. doi: 10.2478/acb-2019-0018. DOI
Wagner M., Yoshihara M., Douagi I., Damdimopoulos A., Panula S., Petropoulos S., Lu H., Pettersson K., Palm K., Katayama S., et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat. Commun. 2020;11:1147. doi: 10.1038/s41467-020-14936-3. PubMed DOI PMC
Crisan M., Yap S., Casteilla L., Chen C.W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., et al. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell. 2008;3:301–313. doi: 10.1016/j.stem.2008.07.003. PubMed DOI
Fan X., Bialecka M., Moustakas I., Lam E., Torrens-Juaneda V., Borggreven N.V., Trouw L., Louwe L.A., Pilgram G.S.K., Mei H., et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat. Commun. 2019;10:3164. doi: 10.1038/s41467-019-11036-9. PubMed DOI PMC
Nilsson E.E., Kezele P., Skinner M.K. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol. Cell. Endocrinol. 2002;188:65–73. doi: 10.1016/S0303-7207(01)00746-8. PubMed DOI
Kranc W., Brązert M., Celichowski P., Bryja A., Nawrocki M.J., Ożegowska K., Jankowski M., Jeseta M., Pawelczyk L., Bręborowicz A., et al. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol. Med. Rep. 2019;19:1705–1715. doi: 10.3892/mmr.2019.9837. PubMed DOI PMC
Brevini T.A.L., Pennarossa G., Rahman M.M., Paffoni A., Antonini S., Ragni G., deEguileor M., Tettamanti G., Gandolfi F. Morphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and Addressed Toward Muscular Differentiation. Stem Cell Rev. Reports. 2014;10:633–642. doi: 10.1007/s12015-014-9521-4. PubMed DOI
Rodgers R.J., Lavranos T.C., Rodgers H.F., Young F.M., Vella C.A. The physiology of the ovary: Maturation of ovarian granulosa cells and a novel role for antioxidants in the corpus luteum. J. Steroid Biochem. Mol. Biol. 1995;53:241–246. doi: 10.1016/0960-0760(95)00054-4. PubMed DOI
Dzafic E., Stimpfel M., Novakovic S., Cerkovnik P., Virant-Klun I. Expression of Mesenchymal Stem Cells-Related Genes and Plasticity of Aspirated Follicular Cells Obtained from Infertile Women. Biomed Res. Int. 2014;2014 doi: 10.1155/2014/508216. PubMed DOI PMC
Chermuła B., Brazert M., Izycki D., Ciesiółka S., Kranc W., Celichowski P., Ozegowska K., Nawrocki M.J., Jankowski M., Jeseta M., et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture in Vitro. Biomed Res. Int. 2019;2019 doi: 10.1155/2019/6545210. PubMed DOI PMC
Bowdridge E.C., Vernon M.W., Flores J.A., Clemmer M.J. In vitro progesterone production by luteinized human mural granulosa cells is modulated by activation of AMPK and cause of infertility. Reprod. Biol. Endocrinol. 2017;15:76. doi: 10.1186/s12958-017-0295-9. PubMed DOI PMC
Furukawa K., Fujiwara H., Sato Y., Zeng B.X., Fujii H., Yoshioka S., Nishi E., Nishio T. Platelets are novel regulators of neovascularization and luteinization during human corpus luteum formation. Endocrinology. 2007;148:3056–3064. doi: 10.1210/en.2006-1687. PubMed DOI
Basini G., Bussolati S., Grolli S., Ramoni R., Conti V., Quintavalla F., Grasselli F. Platelets are involved in in vitro swine granulosa cell luteinization and angiogenesis. Anim. Reprod. Sci. 2018;188:51–56. doi: 10.1016/j.anireprosci.2017.11.008. PubMed DOI
Dzafic E., Stimpfel M., Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J. Assist. Reprod. Genet. 2013;30:1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC
Kinugawa C., Murakami T., Okamura K., Yajima A. Telomerase activity in normal ovaries and premature ovarian failure. Tohoku J. Exp. Med. 2000;190:231–238. doi: 10.1620/tjem.190.231. PubMed DOI
Hoang S.N., Ho C.N.Q., Nguyen T.T.P., Doan C.C., Tran D.H., Le L.T. Evaluation of stemness marker expression in bovine ovarian granulosa cells. Anim. Reprod. 2019;16:277–281. doi: 10.21451/1984-3143-AR2018-0083. PubMed DOI PMC
Bezerra M.É.S., Gouveia B.B., Barberino R.S., Menezes V.G., Macedo T.J.S., Cavalcante A.Y.P., Monte A.P.O., Santos J.M.S., Matos M.H.T. Resveratrol promotes in vitro activation of ovine primordial follicles by reducing DNA damage and enhancing granulosa cell proliferation via phosphatidylinositol 3-kinase pathway. Reprod. Domest. Anim. 2018;53:1298–1305. doi: 10.1111/rda.13274. PubMed DOI
Robinson R.S., Woad K.J., Hammond A.J., Laird M., Hunter M.G., Mann G.E. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138:869–881. doi: 10.1530/REP-09-0283. PubMed DOI
Yang M.Y., Fortune J.E. Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Mol. Reprod. Dev. 2007;74:1095–1104. doi: 10.1002/mrd.20633. PubMed DOI
Nilsson E.E., Detzel C., Skinner M.K. Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction. 2006;131:1007–1015. doi: 10.1530/rep.1.00978. PubMed DOI
Grazul-Bilska A.T., Navanukraw C., Johnson M.L., Vonnahme K.A., Ford S.P., Reynolds L.P., Redmer D.A. Vascularity and expression of angiogenic factors in bovine dominant follicles of the first follicular wave. J. Anim. Sci. 2007;85:1914–1922. doi: 10.2527/jas.2007-0044. PubMed DOI
Woad K.J., Robinson R.S. Luteal angiogenesis and its control. Theriogenology. 2016;86:221–228. doi: 10.1016/j.theriogenology.2016.04.035. PubMed DOI
Reynolds L.P., Redmer D.A. Growth and development of the corpus luteum. J. Reprod. Fertil. Suppl. 1999;54:181–191. doi: 10.1530/biosciprocs.4.014. PubMed DOI
Antczak M., Van Blerkom J. The vascular character of ovarian follicular granulosa cells: Phenotypic and functional evidence for an endothelial-like cell population. Hum. Reprod. 2000;15:2306–2318. doi: 10.1093/humrep/15.11.2306. PubMed DOI
Merkwitz C., Ricken A.M., Lösche A., Sakurai M., Spanel-Borowski K. Progenitor cells harvested from bovine follicles become endothelial cells. Differentiation. 2010;79:203–210. doi: 10.1016/j.diff.2010.02.004. PubMed DOI
Bender H.R., Campbell G.E., Aytoda P., Mathiesen A.H., Duffy D.M. Thrombospondin 1 (THBS1) Promotes Follicular Angiogenesis, Luteinization, and Ovulation in Primates. Front. Endocrinol. 2019;10:727. doi: 10.3389/fendo.2019.00727. PubMed DOI PMC
Garside S.A., Harlow C.R., Hillier S.G., Fraser H.M., Thomas F.H. Thrombospondin-1 Inhibits Angiogenesis and Promotes Follicular Atresia in a Novel in Vitro Angiogenesis Assay. Endocrinology. 2010;151:1280–1289. doi: 10.1210/en.2009-0686. PubMed DOI
Tamanini C., De Ambrogi M. Angiogenesis in Developing Follicle and Corpus Luteum. Reprod. Domest. Anim. 2004;39:206–216. doi: 10.1111/j.1439-0531.2004.00505.x. PubMed DOI
Grasselli F., Basini G., Bussolati S., Tamanini C. Effects of VEGF and bFGF on proliferation and production of steroids and nitric oxide in porcine granulosa cells. Reprod. Domest. Anim. 2002;37:362–368. doi: 10.1046/j.1439-0531.2002.00386.x. PubMed DOI
Robinson R.S., Nicklin L.T., Hammond A.J., Schams D., Hunter M.G., Mann G.E. Fibroblast Growth Factor 2 Is More Dynamic than Vascular Endothelial Growth Factor A During the Follicle-Luteal Transition in the Cow1. Biol. Reprod. 2007;77:28–36. doi: 10.1095/biolreprod.106.055434. PubMed DOI
Yamashita H., Kamada D., Shirasuna K., Matsui M., Shimizu T., Kida K., Berisha B., Schams D., Miyamoto A. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol. Reprod. Dev. 2008;75:1449–1456. doi: 10.1002/mrd.20878. PubMed DOI
Calvani M., Rapisarda A., Uranchimeg B., Shoemaker R.H., Melillo G. Hypoxic induction of an HIF-1α-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood. 2006;107:2705–2712. doi: 10.1182/blood-2005-09-3541. PubMed DOI PMC
Nishimura R., Okuda K. Hypoxia is important for establishing vascularization during corpus luteum formation in cattle. J. Reprod. Dev. 2010;56:110–116. doi: 10.1262/jrd.09-162E. PubMed DOI
Fraser H.M., Duncan W.C. Vascular morphogenesis in the primate ovary. Angiogenesis. 2005;8:101–116. doi: 10.1007/s10456-005-9004-y. PubMed DOI
Shimizu T., Miyamoto A. Progesterone induces the expression of vascular endothelial growth factor (VEGF) 120 and Flk-1, its receptor, in bovine granulosa cells. Anim. Reprod. Sci. 2007;102:228–237. doi: 10.1016/j.anireprosci.2006.11.012. PubMed DOI
Shimizu T., Jayawardana B.C., Nishimoto H., Kaneko E., Tetsuka M., Miyamoto A. Hormonal regulation and differential expression of neuropilin (NRP)-1 and NRP-2 genes in bovine granulosa cells. Reproduction. 2006;131:555–559. doi: 10.1530/rep.1.00937. PubMed DOI
Greenberg J.I., Shields D.J., Barillas S.G., Acevedo L.M., Murphy E., Huang J., Scheppke L., Stockmann C., Johnson R.S., Angle N., et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456:809–814. doi: 10.1038/nature07424. PubMed DOI PMC
Kuhnert F., Tam B.Y.Y., Sennino B., Gray J.T., Yuan J., Jocson A., Nayak N.R., Mulligan R.C., McDonald D.M., Kuo C.J. Soluble receptor-mediated selective inhibition of VEGFR and PDGFRβ signaling during physiologic and tumor angiogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:10185–10190. doi: 10.1073/pnas.0803194105. PubMed DOI PMC
Sleer L.S., Taylor C.C. Platelet-derived growth factors and receptors in the rat corpus luteum: Localization and identification of an effect on luteogenesis. Biol. Reprod. 2007;76:391–400. doi: 10.1095/biolreprod.106.053934. PubMed DOI
Maisonpierre P.C., Suri C., Jones P.F., Bartunkova S., Wiegand S.J., Radziejewski C., Compton D., McClain J., Aldrich T.H., Papadopoulos N., et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60. doi: 10.1126/science.277.5322.55. PubMed DOI
Gurtan A.M., Sharp P.A. The role of miRNAs in regulating gene expression networks. J. Mol. Biol. 2013;425:3582–3600. doi: 10.1016/j.jmb.2013.03.007. PubMed DOI PMC
Salilew-Wondim D., Gebremedhn S., Hoelker M., Tholen E., Hailay T., Tesfaye D. The role of micrornas in mammalian fertility: From gametogenesis to embryo implantation. Int. J. Mol. Sci. 2020;21:585. doi: 10.3390/ijms21020585. PubMed DOI PMC
Sinha P.B., Tesfaye D., Rings F., Hossien M., Hoelker M., Held E., Neuhoff C., Tholen E., Schellander K., Salilew-Wondim D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J. Ovarian Res. 2017;10:37. doi: 10.1186/s13048-017-0336-1. PubMed DOI PMC
Zhang J., Guan Y., Shen C., Zhang L., Wang X. MicroRNA-375 regulates oocyte in vitro maturation by targeting ADAMTS1 and PGR in bovine cumulus cells. Biomed. Pharmacother. 2019;118:109350. doi: 10.1016/j.biopha.2019.109350. PubMed DOI
Chen H., Liu C., Jiang H., Gao Y., Xu M., Wang J., Liu S., Fu Y., Sun X., Xu J., et al. Regulatory Role of miRNA-375 in Expression of BMP15/GDF9 Receptors and its Effect on Proliferation and Apoptosis of Bovine Cumulus Cells. Cell. Physiol. Biochem. 2017;41:439–450. doi: 10.1159/000456597. PubMed DOI
Ma L., Zheng Y., Tang X., Gao H., Liu N., Gao Y., Hao L., Liu S., Jiang Z. MiR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling. Reproduction. 2019;158:441–452. doi: 10.1530/REP-19-0285. PubMed DOI
Assou S., Al-Edani T., Haouzi D., Philippe N., Lecellier C.H., Piquemal D., Commes T., Aït-Ahmed O., Dechaud H., Hamamah S. MicroRNAs: New candidates for the regulation of the human cumulus-oocyte complex. Hum. Reprod. 2013;28:3038–3049. doi: 10.1093/humrep/det321. PubMed DOI
Andrei D., Nagy R.A., van Montfoort A., Tietge U., Terpstra M., Kok K., van den Berg A., Hoek A., Kluiver J., Donker R. Differential miRNA Expression Profiles in Cumulus and Mural Granulosa Cells from Human Pre-ovulatory Follicles. MicroRNA. 2018;8:61–67. doi: 10.2174/2211536607666180912152618. PubMed DOI PMC
Sirotkin A.V., Lauková M., Ovcharenko D., Brenaut P., Mlynček M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J. Cell. Physiol. 2010;223:49–56. doi: 10.1002/jcp.21999. PubMed DOI
Sirotkin A.V., Kisova G., Brenaut P., Ovcharenko D., Grossmann R., Mlyncek M. Involvement of MicroRNA Mir15a in Control of Human Ovarian Granulosa Cell Proliferation, Apoptosis, Steroidogenesis, and Response to FSH. MicroRNA. 2014;3:29–36. doi: 10.2174/2211536603666140227232824. PubMed DOI
Zhang L., Zhang X.X., Zhang X., Lu Y., Li L., Cui S. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J. Endocrinol. 2017;234:1–14. doi: 10.1530/JOE-16-0488. PubMed DOI
Yang X., Zhou Y., Peng S., Wu L., Lin H.Y., Wang S., Wang H. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144:234–244. doi: 10.1530/REP-11-0371. PubMed DOI
Nie M., Yu S., Peng S., Fang Y., Wang H., Yang X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD51. Biol. Reprod. 2015;98:1–10. doi: 10.1095/biolreprod.115.130690. PubMed DOI
Cho S.H., An H.J., Kim K.A., Ko J.J., Kim J.H., Kim Y.R., Ahn E.H., Rah H.C., Lee W.S., Kim N.K. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. PLoS ONE. 2017;12:e0183479. doi: 10.1371/journal.pone.0183479. PubMed DOI PMC
Cho S.H., Ahn E.H., An H.J., Kim J.H., Ko J.J., Kim Y.R., Lee W.S., Kim N.K. Association of mir-938G>A polymorphisms with primary ovarian insufficiency (POI)-related gene expression. Int. J. Mol. Sci. 2017;18:1255. doi: 10.3390/ijms18061255. PubMed DOI PMC
Zhao G., Zhou X., Fang T., Hou Y., Hu Y. Hyaluronic acid promotes the expression of progesterone receptor membrane component 1 via epigenetic silencing of miR-139-5p in human and rat granulosa cells. Biol. Reprod. 2014;91:116. doi: 10.1095/biolreprod.114.120295. PubMed DOI
Naji M., Aleyasin A., Nekoonam S., Arefian E., Mahdian R., Amidi F. Differential Expression of miR-93 and miR-21 in Granulosa Cells and Follicular Fluid of Polycystic Ovary Syndrome Associating with Different Phenotypes. Sci. Rep. 2017:7. doi: 10.1038/s41598-017-13250-1. PubMed DOI PMC
Zhang C.L., Wang H., Yan C.Y., Gao X.F., Ling X.J. Deregulation of RUNX2 by miR-320a deficiency impairs steroidogenesis in cumulus granulosa cells from polycystic ovary syndrome (PCOS) patients. Biochem. Biophys. Res. Commun. 2017;482:1469–1476. doi: 10.1016/j.bbrc.2016.12.059. PubMed DOI
Xiang Y., Song Y., Li Y., Zhao D., Ma L., Tan L. miR-483 is down-regulated in polycystic ovarian syndrome and inhibits KGN cell proliferation via targeting insulin-like growth factor 1 (IGF1) Med. Sci. Monit. 2016;22:3383–3393. doi: 10.12659/MSM.897301. PubMed DOI PMC
Cai G., Ma X., Chen B., Huang Y., Liu S., Yang H., Zou W. MicroRNA-145 Negatively Regulates Cell Proliferation Through Targeting IRS1 in Isolated Ovarian Granulosa Cells from Patients with Polycystic Ovary Syndrome. Reprod. Sci. 2017;24:902–910. doi: 10.1177/1933719116673197. PubMed DOI
De La Fuente R., Eppig J.J. Transcriptional activity of the mouse oocyte genome: Companion granulosa cells modulate transcription and chromatin remodeling. Dev. Biol. 2001;229:224–236. doi: 10.1006/dbio.2000.9947. PubMed DOI
Brower P.T., Schultz R.M. Intercellular communication between granulosa cells and mouse oocytes: Existence and possible nutritional role during oocyte growth. Dev. Biol. 1982;90:144–153. doi: 10.1016/0012-1606(82)90219-6. PubMed DOI
Amsterdam A., Tajima K., Frajese V., Seger R. Analysis of signal transduction stimulated by gonadotropins in granulosa cells. Mol. Cell. Endocrinol. 2003;202:77–80. PubMed
Kocherova I., Bryl R., Crha I., Ventruba P., Zakova J., Ješeta M. The extracellular reactive oxygen species levels in primary in vitro culture of human ovarian granulosa and cumulus cells. Med. J. Cell Biol. 2020;8:112–117. doi: 10.2478/acb-2020-0014. DOI
Brazert M., Kranc W., Jopek K., Kempisty B., Pawelczyk L. New markers of human cumulus oophorus cells cultured in vitro-transcriptomic profile. Med. J. Cell Biol. 2020;8:60–72. doi: 10.2478/acb-2020-0007. DOI
Ismail R.S., Okawara Y., Fryer J.N., Vanderhyden B.C. Hormonal regulation of the ligand for c-kit in the rat ovary and its effects on spontaneous oocyte meiotic maturation. Mol. Reprod. Dev. 1996;43:458–469. doi: 10.1002/(SICI)1098-2795(199604)43:4<458::AID-MRD8>3.0.CO;2-O. PubMed DOI
Manova K., Huang E.J., Angeles M., De Leon V., Sanchez S., Pronovost S.M., Besmer P., Bachvarova R.F. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev. Biol. 1993;157:85–99. doi: 10.1006/dbio.1993.1114. PubMed DOI
Laitinen M., Rutanen E.M., Ritvos O. Expression of c-kit ligand messenger ribonucleic acids in human ovaries and regulation of their steady state levels by gonadotropins in cultured granulosa-luteal cells. Endocrinology. 1995;136:4407–4414. doi: 10.1210/endo.136.10.7545103. PubMed DOI
Parrott J.A., Skinner M.K. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140:4262–4271. doi: 10.1210/endo.140.9.6994. PubMed DOI
Thomas F.H., Ethier J.F., Shimasaki S., Vanderhyden B.C. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology. 2005;146:941–949. doi: 10.1210/en.2004-0826. PubMed DOI
Huang E.J., Manova K., Packer A.I., Sanchez S., Bachvarova R.F., Besmer P. The murine Steel Panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev. Biol. 1993;157:100–109. doi: 10.1006/dbio.1993.1115. PubMed DOI
Yoshida H., Takakura N., Kataoka H., Kunisada T., Okamura H., Nishikawa S.I. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev. Biol. 1997;184:122–137. doi: 10.1006/dbio.1997.8503. PubMed DOI
Jin X., Han C.S., Zhang X.S., Yuan J.X., Hu Z.Y., Liu Y.X. Signal transduction of stem cell factor in promoting early follicle development. Mol. Cell. Endocrinol. 2005;229:3–10. doi: 10.1016/j.mce.2004.10.006. PubMed DOI
Reddy P., Liu L., Adhikari D., Jagarlamudi K., Rajareddy S., Shen Y., Du C., Tang W., Hämäläinen T., Peng S.L., et al. Oocyte-specific deletion of pten causes premature activation of the primordial follicle pool. Science. 2008;319:611–613. doi: 10.1126/science.1152257. PubMed DOI
Reddy P., Shen L., Ren C., Boman K., Lundin E., Ottander U., Lindgren P., Liu Y.X., Sun Q.Y., Liu K. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev. Biol. 2005;281:160–170. doi: 10.1016/j.ydbio.2005.02.013. PubMed DOI
Honda A., Hirose M., Inoue K., Hiura H., Miki H., Ogonuki N., Sugimoto M., Abe K., Kanatsu-Shinohara M., Kono T., et al. Large-scale production of growing oocytes in vitro from neonatal mouse ovaries. Int. J. Dev. Biol. 2009;53:605–613. doi: 10.1387/ijdb.082607ah. PubMed DOI
Salustri A., Ulisse S., Yanagishita M., Hascall V.C. Hyaluronic acid synthesis by mural granulosa cells and cumulus cells in vitro is selectively stimulated by a factor produced by oocytes and by transforming growth factor-β. J. Biol. Chem. 1990;265:19517–19523. doi: 10.1016/S0021-9258(17)45403-2. PubMed DOI
Diaz F.J., O’Brien M.J., Wigglesworth K., Eppig J.J. The preantral granulosa cell to cumulus cell transition in the mouse ovary: Development of competence to undergo expansion. Dev. Biol. 2006;299:91–104. doi: 10.1016/j.ydbio.2006.07.012. PubMed DOI
Dragovic R.A., Ritter L.J., Schulz S.J., Amato F., Armstrong D.T., Gilchrist R.B. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology. 2005;146:2798–2806. doi: 10.1210/en.2005-0098. PubMed DOI
Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008;14:159–177. doi: 10.1093/humupd/dmm040. PubMed DOI
Eppig J.J., Wigglesworth K., Pendola F., Hirao Y. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol. Reprod. 1997;56:976–984. doi: 10.1095/biolreprod56.4.976. PubMed DOI
Li R., Norman R.J., Armstrong D.T., Gilchrist R.B. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 2000;63:839–845. doi: 10.1095/biolreprod63.3.839. PubMed DOI
Hussein T.S., Froiland D.A., Amato F., Thompson J.G., Gilchrist R.B. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 2005;118:5257–5268. doi: 10.1242/jcs.02644. PubMed DOI
Sibiak R., Bryl R., Stefańska K., Chermuła B., Pieńkowski W., Jeseta M., Pawelczyk L., Mozdziak P., Spaczyński R.Z., Kempisty B. Expression of the apoptosis regulatory gene family in the long-term in vitro cultured human cumulus cells. Med. J. Cell Biol. 2021;9:8–13. doi: 10.2478/acb-2021-0002. DOI
Kocherova I., Stefańska K., Bryl R., Perek J., Pieńkowski W., Zakova J., Crha I., Ventruba P., Mozdziak P., Ješeta M. Apoptosis-related genes expression in primary in vitro culture of human ovarian granulosa cells. Med. J. Cell Biol. 2020;8:176–182. doi: 10.2478/acb-2020-0023. DOI
Dong J., Albertini D.F., Nishimori K., Kumar T.R., Lu N., Matzuk M.M. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–535. doi: 10.1038/383531a0. PubMed DOI
Yan C., Wang P., Demayo J., Demayo F.J., Elvin J.A., Carino C., Prasad S.V., Skinner S.S., Dunbar B.S., Dube J.L., et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 2001;15:854–866. doi: 10.1210/mend.15.6.0662. PubMed DOI
Matzuk M.M., Burns K.H., Viveiros M.M., Eppig J.J. Intercellular communication in the mammalian ovary: Oocytes carry the conversation. Science (80-. ). 2002;296:2178–2180. doi: 10.1126/science.1071965. PubMed DOI
Hanrahan J.P., Gregan S.M., Mulsant P., Mullen M., Davis G.H., Powell R., Galloway S.M. Mutations in the Genes for Oocyte-Derived Growth Factors GDF9 and BMP15 Are Associated with Both Increased Ovulation Rate and Sterility in Cambridge and Belclare Sheep (Ovis aries) Biol. Reprod. 2004;70:900–909. doi: 10.1095/biolreprod.103.023093. PubMed DOI
Sugiura K., Su Y.Q., Diaz F.J., Pangas S.A., Sharma S., Wigglesworth K., O’Brien M.J., Matzuk M.M., Shimasaki S., Eppig J.J. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134:2593–2603. doi: 10.1242/dev.006882. PubMed DOI
Mottershead D.G., Ritter L.J., Gilchrist R.B. Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15. Mol. Hum. Reprod. 2012;18:121–128. doi: 10.1093/molehr/gar056. PubMed DOI PMC
Rybska M., Knap S., Stefańska K., Jankowski M., Chamier-Gliszczyńska A., Popis M., Jeseta M., Bukowska D., Antosik P., Kempisty B., et al. Transforming growth factor (TGF)—Is it a key protein in mammalian reproductive biology? Med. J. Cell Biol. 2018;6:127–130. doi: 10.2478/acb-2018-0020. DOI
Joyce I.M., Clark A.T., Pendola F.L., Eppig J.J. Comparison of recombinant growth differentiation factor-9 and oocyte regulation of KIT ligand messenger ribonucleic acid expression in mouse ovarian follicles. Biol. Reprod. 2000;63:1669–1675. doi: 10.1095/biolreprod63.6.1669. PubMed DOI
Bryja A., Pieńkowski W., Stefańska K., Chermuła B., Bryl R., Wieczorkiewicz M., Kulus J., Wąsiatycz G., Bukowska D., Ratajczak K., et al. Analysis of TGFB1, CD105 and FSP1 expression in human granulosa cells during a 7-day primary in vitro culture. Med. J. Cell Biol. 2020;8:152–157. doi: 10.2478/acb-2020-0019. DOI
Baena V., Terasaki M. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci. Rep. 2019;9:1262. doi: 10.1038/s41598-018-37766-2. PubMed DOI PMC
Macaulay A.D., Gilbert I., Caballero J., Barreto R., Fournier E., Tossou P., Sirard M.A., Clarke H.J., Khandjian É.W., Richard F.J., et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol. Reprod. 2014;91:90. doi: 10.1095/biolreprod.114.119867. PubMed DOI
Albertini D.F., Rider V. Patterns of intercellular connectivity in the mammalian cumulus-oocyte complex. Microsc. Res. Tech. 1994;27:125–133. doi: 10.1002/jemt.1070270206. PubMed DOI
Motta P.M., Correr S., Makabe S., Naguro T. Oocyte Follicle Cells Association during Development of Human Ovarian Follicle. A Study by High Resolution Scanning and Transmission Electron Microscopy. Arch. Histol. Cytol. 1994;57:369–394. doi: 10.1679/aohc.57.369. PubMed DOI
Simon A.M., Goodenough D.A. Diverse functions of vertebrate gap junctions. Trends Cell Biol. 1998;8:477–483. doi: 10.1016/S0962-8924(98)01372-5. PubMed DOI
Willecke K., Eiberger J., Degen J., Eckardt D., Romualdi A., Güldenagel M., Deutsch U., Söhl G. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 2002;383:725–737. doi: 10.1515/BC.2002.076. PubMed DOI
Kidder G.M., Vanderhyden B.C. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 2010;88:399–413. doi: 10.1139/Y10-009. PubMed DOI PMC
Pelland A.M.D., Corbett H.E., Baltz J.M. Amino acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol. Reprod. 2009;81:1041–1054. doi: 10.1095/biolreprod.109.079046. PubMed DOI PMC
Purcell S.H., Moley K.H. Glucose transporters in gametes and preimplantation embryos. Trends Endocrinol. Metab. 2009;20:483–489. doi: 10.1016/j.tem.2009.06.006. PubMed DOI PMC
Augustin R., Pocar P., Navarrete-Santos A., Wrenzycki C., Gandolfi F., Niemann H., Fischer B. Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Mol. Reprod. Dev. 2001;60:370–376. doi: 10.1002/mrd.1099. PubMed DOI
Orisaka M., Tajima K., Tsang B.K., Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J. Ovarian Res. 2009;2:9. doi: 10.1186/1757-2215-2-9. PubMed DOI PMC
Murray A.A., Gosden R.G., Allison V., Spears N. Effect of androgens on the development of mouse follicles growing in vitro. J. Reprod. Fertil. 1998;113:27–33. doi: 10.1530/jrf.0.1130027. PubMed DOI
Orisaka M., Jiang J.Y., Orisaka S., Kotsuji F., Tsang B.K. Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology. 2009;150:2740–2748. doi: 10.1210/en.2008-1536. PubMed DOI
Mattioli M., Gloria A., Turriani M., Berardinelli P., Russo V., Nardinocchi D., Curini V., Baratta M., Martignani E., Barboni B. Osteo-regenerative potential of ovarian granulosa cells: An in vitro and in vivo study. Theriogenology. 2012;77:1425–1437. doi: 10.1016/j.theriogenology.2011.11.008. PubMed DOI
Chandramohan Y., Jeganathan K., Sivanesan S., Koka P., Amritha T.M.S., Vimalraj S., Dhanasekaran A. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration. Life Sci. 2021;264:118502. doi: 10.1016/j.lfs.2020.118502. PubMed DOI
Tian C., Liu L., Ye X., Fu H., Sheng X., Wang L., Wang H., Heng D., Liu L. Functional Oocytes Derived from Granulosa Cells. Cell Rep. 2019;29:4256–4267.e9. doi: 10.1016/j.celrep.2019.11.080. PubMed DOI
Madkour A., Bouamoud N., Kaarouch I., Louanjli N., Saadani B., Assou S., Aboulmaouahib S., Sefrioui O., Amzazi S., Copin H., et al. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome. Fertil. Steril. 2018;110:710–719. doi: 10.1016/j.fertnstert.2018.04.038. PubMed DOI
Atrabi M.J., Akbarinejad V., Khanbabaee R., Dalman A., Amorim C.A., Najar-Asl M., Valojerdi M.R., Fathi R. Formation and activation induction of primordial follicles using granulosa and cumulus cells conditioned media. J. Cell. Physiol. 2019;234:10148–10156. doi: 10.1002/jcp.27681. PubMed DOI
Taheri M., Saki G., Nikbakht R., Eftekhari A.R. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol. Int. 2021;45:127–139. doi: 10.1002/cbin.11475. PubMed DOI
Lee Y.M., Kim T.H., Lee J.H., Lee W.J., Jeon R.H., Jang S.J., Ock S.A., Lee S.L., Park B.W., Rho G.J. Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. J. Ovarian Res. 2016;9:24. doi: 10.1186/s13048-016-0233-z. PubMed DOI PMC
Kordus R.J., LaVoie H.A. Granulosa cell biomarkers to predict pregnancy in ART: Pieces to solve the puzzle. Reproduction. 2017;153:R69–R83. doi: 10.1530/REP-16-0500. PubMed DOI
Luddi A., Gori M., Marrocco C., Capaldo A., Pavone V., Bianchi L., Boschi L., Morgante G., Piomboni P., de Leo V. Matrix metalloproteinases and their inhibitors in human cumulus and granulosa cells as biomarkers for oocyte quality estimation. Fertil. Steril. 2018;109:930–939.e3. doi: 10.1016/j.fertnstert.2018.01.030. PubMed DOI