Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis

. 2021 Jun 05 ; 10 (6) : . [epub] 20210605

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34198768

Grantová podpora
2018/31/B/NZ5/02475 Narodowe Centrum Nauki

The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte's proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.

Zobrazit více v PubMed

Ndefo U.A., Eaton A., Green M.R. Polycystic ovary syndrome: A review of treatment options with a focus on pharmacological approaches. P T. 2013;38:336–355. PubMed PMC

Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr. Stem Cell Res. Ther. 2019;15:473–481. doi: 10.2174/1574888X14666190314123006. PubMed DOI

Rybska M., Knap S., Jankowski M., Borowiec B., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., et al. Pathogenesis and pathophysiology of ovarian follicular cysts in mammals. Med. J. Cell Biol. 2018;6:120–124. doi: 10.2478/acb-2018-0019. DOI

Zhang T., Lee W.Y.W., Rui Y.F., Cheng T.Y., Jiang X.H., Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res. Ther. 2013;4 doi: 10.1093/annonc/mdt047.9. PubMed DOI PMC

Song Y., Du H., Dai C., Zhang L., Li S., Hunter D.J., Lu L., Bao C. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen. Med. 2018;13:295–307. doi: 10.2217/rme-2017-0152. PubMed DOI

Can A., Celikkan F.T., Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy. 2017;19:1351–1382. doi: 10.1016/j.jcyt.2017.08.004. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The Development of Fibroblast Colonies in Monolayer Cultures of Guinea-Pig Bone Marrow and Spleen Cells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x. PubMed DOI

Kossowska-Tomaszczuk K., De Geyter C., De Geyter M., Martin I., Holzgreve W., Scherberich A., Zhang H. The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI

Weidner N., Cote R.J., Suster S., Weiss L.M. Modern Surgical Pathology. Saunders; Philadelphia, PA, USA: 2009.

Gougeon A. Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocr. Rev. 1996;17:121–155. doi: 10.1210/edrv-17-2-121. PubMed DOI

Uyar A., Torrealday S., Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 2013;99:979–997. doi: 10.1016/j.fertnstert.2013.01.129. PubMed DOI PMC

McGee E.A., Hsueh A.J.W. Initial and Cyclic Recruitment of Ovarian Follicles*. Endocr. Rev. 2000;21:200–214. doi: 10.1210/er.21.2.200. PubMed DOI

Da Silva-Buttkus P., Jayasooriya G.S., Mora J.M., Mobberley M., Ryder T.A., Baithun M., Stark J., Franks S., Hardy K. Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J. Cell Sci. 2008;121:3890–3900. doi: 10.1242/jcs.036400. PubMed DOI

Shah J.S., Sabouni R., Cayton Vaught K.C., Owen C.M., Albertini D.F., Segars J.H. Biomechanics and mechanical signaling in the ovary: A systematic review. J. Assist. Reprod. Genet. 2018;35:1135–1148. doi: 10.1007/s10815-018-1180-y. PubMed DOI PMC

Kossowska-Tomaszczuk K., De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res. Int. 2013;2013:310859. doi: 10.1155/2013/310859. PubMed DOI PMC

Findlay J.K., Kerr J.B., Britt K., Liew S.H., Simpson E.R., Rosairo D., Drummond A. Ovarian physiology: Follicle development, oocyte and hormone relationships. Anim. Reprod. 2009;6:16–19.

Nguyen T., Lee S., Hatzirodos N., Hummitzsch K., Sullivan T.R., Rodgers R.J., Irving-Rodgers H.F. Spatial differences within the membrana granulosa in the expression of focimatrix and steroidogenic capacity. Mol. Cell. Endocrinol. 2012;363:62–73. doi: 10.1016/j.mce.2012.07.009. PubMed DOI

Kranc W., Chachula A., Wojtanowicz-Markiewicz K., Ciesiólka S., Ociepa E., Bukowska D., Borys S., Piotrowska H., Bryja A., Antosik P., et al. The Insight into Developmental Capacity of Mammalian Cocs and Cumulus-Granulosa Cells-Recent Studies and Perspectives. Austin J. Invit. Fertilzation. 2015;2:1023.

Fraser H.M., Wulff C. Angiogenesis in the corpus luteum. Reprod. Biol. Endocrinol. 2003;1:88. doi: 10.1186/1477-7827-1-88. PubMed DOI PMC

Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI

Kałuzna S., Bryl R., Chermuła B., Sibiak R., Stefańska K., Pieńkowski W., Kranc W., Jeseta M., Ventruba P., Zakova J., et al. Expression of genes involved in the inflammatory response in human granulosa cells in short-term in vitro culture. Med. J. Cell Biol. 2020;8:190–195. doi: 10.2478/acb-2020-0025. DOI

Erickson G.F., Hofeditz C., Unger M., Allen W.R., Dulbecco R. A monoclonal antibody to a mammary cell line recognizes two distinct subtypes of ovarian granulosa cells. Endocrinology. 1985;117:1490–1499. doi: 10.1210/endo-117-4-1490. PubMed DOI

Plancha C.E., Sanfins A., Rodrigues P., Albertini D. Cell polarity during folliculogenesis and oogenesis. Reprod. Biomed. Online. 2005;10:478–484. doi: 10.1016/S1472-6483(10)60824-3. PubMed DOI

Saeed-Zidane M., Linden L., Salilew-Wondim D., Held E., Neuhoff C., Tholen E., Hoelker M., Schellander K., Tesfaye D. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0187569. PubMed DOI PMC

Mora J.M., Fenwick M.A., Castle L., Baithun M., Ryder T.A., Mobberley M., Carzaniga R., Franks S., Hardy K. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol. Reprod. 2012;86:1–14. doi: 10.1095/biolreprod.111.096156. PubMed DOI

Vanderhyden B.C., Tonary A.M. Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulosa cells by a factor(s) secreted by the oocyte. Biol. Reprod. 1995;53:1243–1250. doi: 10.1095/biolreprod53.6.1243. PubMed DOI

Kranc W., Budna J., Kahan R., Chachuła A., Bryja A., Ciesiółka S., Borys S., Antosik M.P., Bukowska D., Brussow K.P., et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J. Biol. Regul. Homeost. Agents. 2017;31:1–8. PubMed

Rodgers R.J., Lavranos T.C., Van Wezel I.L., Irving-Rodgers H.F. Development of the ovarian follicular epithelium. Mol. Cell. Endocrinol. 1999;151:171–179. doi: 10.1016/S0303-7207(99)00087-8. PubMed DOI

Jagarlamudi K., Rajkovic A. Oogenesis: Transcriptional regulators and mouse models. Mol. Cell. Endocrinol. 2012;356:31–39. doi: 10.1016/j.mce.2011.07.049. PubMed DOI

Lan C.-W., Chen M.-J., Jan P.-S., Chen H.-F., Ho H.-N. Differentiation of Human Embryonic Stem Cells Into Functional Ovarian Granulosa-like Cells. J. Clin. Endocrinol. Metab. 2013;98:3713–3723. doi: 10.1210/jc.2012-4302. PubMed DOI

Bowen N.J., Walker L.D., Matyunina L.V., Logani S., Totten K.A., Benigno B.B., McDonald J.F. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med. Genomics. 2009;2:71. doi: 10.1186/1755-8794-2-71. PubMed DOI PMC

Virant-Klun I., Skutella T., Stimpfel M., Sinkovec J. Ovarian surface epithelium in patients with severe ovarian infertility: A potential source of cells expressing markers of pluripotent/multipotent stem cells. J. Biomed. Biotechnol. 2011;2011:381928. doi: 10.1155/2011/381928. PubMed DOI PMC

Bhartiya D., Patel H. Ovarian stem cells—resolving controversies. J. Assist. Reprod. Genet. 2018;35:393–398. doi: 10.1007/s10815-017-1080-6. PubMed DOI PMC

Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. Med. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI

Moncrieff L., Mozdziak P., Jeseta M., Machatkova M., Kranc W., Kempisty B. Ovarian follicular cells—Living in the shadow of stemness cellular competence. Med. J. Cell Biol. 2019;7:134–140. doi: 10.2478/acb-2019-0018. DOI

Wagner M., Yoshihara M., Douagi I., Damdimopoulos A., Panula S., Petropoulos S., Lu H., Pettersson K., Palm K., Katayama S., et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat. Commun. 2020;11:1147. doi: 10.1038/s41467-020-14936-3. PubMed DOI PMC

Crisan M., Yap S., Casteilla L., Chen C.W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., et al. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell. 2008;3:301–313. doi: 10.1016/j.stem.2008.07.003. PubMed DOI

Fan X., Bialecka M., Moustakas I., Lam E., Torrens-Juaneda V., Borggreven N.V., Trouw L., Louwe L.A., Pilgram G.S.K., Mei H., et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat. Commun. 2019;10:3164. doi: 10.1038/s41467-019-11036-9. PubMed DOI PMC

Nilsson E.E., Kezele P., Skinner M.K. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol. Cell. Endocrinol. 2002;188:65–73. doi: 10.1016/S0303-7207(01)00746-8. PubMed DOI

Kranc W., Brązert M., Celichowski P., Bryja A., Nawrocki M.J., Ożegowska K., Jankowski M., Jeseta M., Pawelczyk L., Bręborowicz A., et al. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol. Med. Rep. 2019;19:1705–1715. doi: 10.3892/mmr.2019.9837. PubMed DOI PMC

Brevini T.A.L., Pennarossa G., Rahman M.M., Paffoni A., Antonini S., Ragni G., deEguileor M., Tettamanti G., Gandolfi F. Morphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and Addressed Toward Muscular Differentiation. Stem Cell Rev. Reports. 2014;10:633–642. doi: 10.1007/s12015-014-9521-4. PubMed DOI

Rodgers R.J., Lavranos T.C., Rodgers H.F., Young F.M., Vella C.A. The physiology of the ovary: Maturation of ovarian granulosa cells and a novel role for antioxidants in the corpus luteum. J. Steroid Biochem. Mol. Biol. 1995;53:241–246. doi: 10.1016/0960-0760(95)00054-4. PubMed DOI

Dzafic E., Stimpfel M., Novakovic S., Cerkovnik P., Virant-Klun I. Expression of Mesenchymal Stem Cells-Related Genes and Plasticity of Aspirated Follicular Cells Obtained from Infertile Women. Biomed Res. Int. 2014;2014 doi: 10.1155/2014/508216. PubMed DOI PMC

Chermuła B., Brazert M., Izycki D., Ciesiółka S., Kranc W., Celichowski P., Ozegowska K., Nawrocki M.J., Jankowski M., Jeseta M., et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture in Vitro. Biomed Res. Int. 2019;2019 doi: 10.1155/2019/6545210. PubMed DOI PMC

Bowdridge E.C., Vernon M.W., Flores J.A., Clemmer M.J. In vitro progesterone production by luteinized human mural granulosa cells is modulated by activation of AMPK and cause of infertility. Reprod. Biol. Endocrinol. 2017;15:76. doi: 10.1186/s12958-017-0295-9. PubMed DOI PMC

Furukawa K., Fujiwara H., Sato Y., Zeng B.X., Fujii H., Yoshioka S., Nishi E., Nishio T. Platelets are novel regulators of neovascularization and luteinization during human corpus luteum formation. Endocrinology. 2007;148:3056–3064. doi: 10.1210/en.2006-1687. PubMed DOI

Basini G., Bussolati S., Grolli S., Ramoni R., Conti V., Quintavalla F., Grasselli F. Platelets are involved in in vitro swine granulosa cell luteinization and angiogenesis. Anim. Reprod. Sci. 2018;188:51–56. doi: 10.1016/j.anireprosci.2017.11.008. PubMed DOI

Dzafic E., Stimpfel M., Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J. Assist. Reprod. Genet. 2013;30:1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC

Kinugawa C., Murakami T., Okamura K., Yajima A. Telomerase activity in normal ovaries and premature ovarian failure. Tohoku J. Exp. Med. 2000;190:231–238. doi: 10.1620/tjem.190.231. PubMed DOI

Hoang S.N., Ho C.N.Q., Nguyen T.T.P., Doan C.C., Tran D.H., Le L.T. Evaluation of stemness marker expression in bovine ovarian granulosa cells. Anim. Reprod. 2019;16:277–281. doi: 10.21451/1984-3143-AR2018-0083. PubMed DOI PMC

Bezerra M.É.S., Gouveia B.B., Barberino R.S., Menezes V.G., Macedo T.J.S., Cavalcante A.Y.P., Monte A.P.O., Santos J.M.S., Matos M.H.T. Resveratrol promotes in vitro activation of ovine primordial follicles by reducing DNA damage and enhancing granulosa cell proliferation via phosphatidylinositol 3-kinase pathway. Reprod. Domest. Anim. 2018;53:1298–1305. doi: 10.1111/rda.13274. PubMed DOI

Robinson R.S., Woad K.J., Hammond A.J., Laird M., Hunter M.G., Mann G.E. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138:869–881. doi: 10.1530/REP-09-0283. PubMed DOI

Yang M.Y., Fortune J.E. Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Mol. Reprod. Dev. 2007;74:1095–1104. doi: 10.1002/mrd.20633. PubMed DOI

Nilsson E.E., Detzel C., Skinner M.K. Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction. 2006;131:1007–1015. doi: 10.1530/rep.1.00978. PubMed DOI

Grazul-Bilska A.T., Navanukraw C., Johnson M.L., Vonnahme K.A., Ford S.P., Reynolds L.P., Redmer D.A. Vascularity and expression of angiogenic factors in bovine dominant follicles of the first follicular wave. J. Anim. Sci. 2007;85:1914–1922. doi: 10.2527/jas.2007-0044. PubMed DOI

Woad K.J., Robinson R.S. Luteal angiogenesis and its control. Theriogenology. 2016;86:221–228. doi: 10.1016/j.theriogenology.2016.04.035. PubMed DOI

Reynolds L.P., Redmer D.A. Growth and development of the corpus luteum. J. Reprod. Fertil. Suppl. 1999;54:181–191. doi: 10.1530/biosciprocs.4.014. PubMed DOI

Antczak M., Van Blerkom J. The vascular character of ovarian follicular granulosa cells: Phenotypic and functional evidence for an endothelial-like cell population. Hum. Reprod. 2000;15:2306–2318. doi: 10.1093/humrep/15.11.2306. PubMed DOI

Merkwitz C., Ricken A.M., Lösche A., Sakurai M., Spanel-Borowski K. Progenitor cells harvested from bovine follicles become endothelial cells. Differentiation. 2010;79:203–210. doi: 10.1016/j.diff.2010.02.004. PubMed DOI

Bender H.R., Campbell G.E., Aytoda P., Mathiesen A.H., Duffy D.M. Thrombospondin 1 (THBS1) Promotes Follicular Angiogenesis, Luteinization, and Ovulation in Primates. Front. Endocrinol. 2019;10:727. doi: 10.3389/fendo.2019.00727. PubMed DOI PMC

Garside S.A., Harlow C.R., Hillier S.G., Fraser H.M., Thomas F.H. Thrombospondin-1 Inhibits Angiogenesis and Promotes Follicular Atresia in a Novel in Vitro Angiogenesis Assay. Endocrinology. 2010;151:1280–1289. doi: 10.1210/en.2009-0686. PubMed DOI

Tamanini C., De Ambrogi M. Angiogenesis in Developing Follicle and Corpus Luteum. Reprod. Domest. Anim. 2004;39:206–216. doi: 10.1111/j.1439-0531.2004.00505.x. PubMed DOI

Grasselli F., Basini G., Bussolati S., Tamanini C. Effects of VEGF and bFGF on proliferation and production of steroids and nitric oxide in porcine granulosa cells. Reprod. Domest. Anim. 2002;37:362–368. doi: 10.1046/j.1439-0531.2002.00386.x. PubMed DOI

Robinson R.S., Nicklin L.T., Hammond A.J., Schams D., Hunter M.G., Mann G.E. Fibroblast Growth Factor 2 Is More Dynamic than Vascular Endothelial Growth Factor A During the Follicle-Luteal Transition in the Cow1. Biol. Reprod. 2007;77:28–36. doi: 10.1095/biolreprod.106.055434. PubMed DOI

Yamashita H., Kamada D., Shirasuna K., Matsui M., Shimizu T., Kida K., Berisha B., Schams D., Miyamoto A. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol. Reprod. Dev. 2008;75:1449–1456. doi: 10.1002/mrd.20878. PubMed DOI

Calvani M., Rapisarda A., Uranchimeg B., Shoemaker R.H., Melillo G. Hypoxic induction of an HIF-1α-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood. 2006;107:2705–2712. doi: 10.1182/blood-2005-09-3541. PubMed DOI PMC

Nishimura R., Okuda K. Hypoxia is important for establishing vascularization during corpus luteum formation in cattle. J. Reprod. Dev. 2010;56:110–116. doi: 10.1262/jrd.09-162E. PubMed DOI

Fraser H.M., Duncan W.C. Vascular morphogenesis in the primate ovary. Angiogenesis. 2005;8:101–116. doi: 10.1007/s10456-005-9004-y. PubMed DOI

Shimizu T., Miyamoto A. Progesterone induces the expression of vascular endothelial growth factor (VEGF) 120 and Flk-1, its receptor, in bovine granulosa cells. Anim. Reprod. Sci. 2007;102:228–237. doi: 10.1016/j.anireprosci.2006.11.012. PubMed DOI

Shimizu T., Jayawardana B.C., Nishimoto H., Kaneko E., Tetsuka M., Miyamoto A. Hormonal regulation and differential expression of neuropilin (NRP)-1 and NRP-2 genes in bovine granulosa cells. Reproduction. 2006;131:555–559. doi: 10.1530/rep.1.00937. PubMed DOI

Greenberg J.I., Shields D.J., Barillas S.G., Acevedo L.M., Murphy E., Huang J., Scheppke L., Stockmann C., Johnson R.S., Angle N., et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456:809–814. doi: 10.1038/nature07424. PubMed DOI PMC

Kuhnert F., Tam B.Y.Y., Sennino B., Gray J.T., Yuan J., Jocson A., Nayak N.R., Mulligan R.C., McDonald D.M., Kuo C.J. Soluble receptor-mediated selective inhibition of VEGFR and PDGFRβ signaling during physiologic and tumor angiogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:10185–10190. doi: 10.1073/pnas.0803194105. PubMed DOI PMC

Sleer L.S., Taylor C.C. Platelet-derived growth factors and receptors in the rat corpus luteum: Localization and identification of an effect on luteogenesis. Biol. Reprod. 2007;76:391–400. doi: 10.1095/biolreprod.106.053934. PubMed DOI

Maisonpierre P.C., Suri C., Jones P.F., Bartunkova S., Wiegand S.J., Radziejewski C., Compton D., McClain J., Aldrich T.H., Papadopoulos N., et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60. doi: 10.1126/science.277.5322.55. PubMed DOI

Gurtan A.M., Sharp P.A. The role of miRNAs in regulating gene expression networks. J. Mol. Biol. 2013;425:3582–3600. doi: 10.1016/j.jmb.2013.03.007. PubMed DOI PMC

Salilew-Wondim D., Gebremedhn S., Hoelker M., Tholen E., Hailay T., Tesfaye D. The role of micrornas in mammalian fertility: From gametogenesis to embryo implantation. Int. J. Mol. Sci. 2020;21:585. doi: 10.3390/ijms21020585. PubMed DOI PMC

Sinha P.B., Tesfaye D., Rings F., Hossien M., Hoelker M., Held E., Neuhoff C., Tholen E., Schellander K., Salilew-Wondim D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J. Ovarian Res. 2017;10:37. doi: 10.1186/s13048-017-0336-1. PubMed DOI PMC

Zhang J., Guan Y., Shen C., Zhang L., Wang X. MicroRNA-375 regulates oocyte in vitro maturation by targeting ADAMTS1 and PGR in bovine cumulus cells. Biomed. Pharmacother. 2019;118:109350. doi: 10.1016/j.biopha.2019.109350. PubMed DOI

Chen H., Liu C., Jiang H., Gao Y., Xu M., Wang J., Liu S., Fu Y., Sun X., Xu J., et al. Regulatory Role of miRNA-375 in Expression of BMP15/GDF9 Receptors and its Effect on Proliferation and Apoptosis of Bovine Cumulus Cells. Cell. Physiol. Biochem. 2017;41:439–450. doi: 10.1159/000456597. PubMed DOI

Ma L., Zheng Y., Tang X., Gao H., Liu N., Gao Y., Hao L., Liu S., Jiang Z. MiR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling. Reproduction. 2019;158:441–452. doi: 10.1530/REP-19-0285. PubMed DOI

Assou S., Al-Edani T., Haouzi D., Philippe N., Lecellier C.H., Piquemal D., Commes T., Aït-Ahmed O., Dechaud H., Hamamah S. MicroRNAs: New candidates for the regulation of the human cumulus-oocyte complex. Hum. Reprod. 2013;28:3038–3049. doi: 10.1093/humrep/det321. PubMed DOI

Andrei D., Nagy R.A., van Montfoort A., Tietge U., Terpstra M., Kok K., van den Berg A., Hoek A., Kluiver J., Donker R. Differential miRNA Expression Profiles in Cumulus and Mural Granulosa Cells from Human Pre-ovulatory Follicles. MicroRNA. 2018;8:61–67. doi: 10.2174/2211536607666180912152618. PubMed DOI PMC

Sirotkin A.V., Lauková M., Ovcharenko D., Brenaut P., Mlynček M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J. Cell. Physiol. 2010;223:49–56. doi: 10.1002/jcp.21999. PubMed DOI

Sirotkin A.V., Kisova G., Brenaut P., Ovcharenko D., Grossmann R., Mlyncek M. Involvement of MicroRNA Mir15a in Control of Human Ovarian Granulosa Cell Proliferation, Apoptosis, Steroidogenesis, and Response to FSH. MicroRNA. 2014;3:29–36. doi: 10.2174/2211536603666140227232824. PubMed DOI

Zhang L., Zhang X.X., Zhang X., Lu Y., Li L., Cui S. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J. Endocrinol. 2017;234:1–14. doi: 10.1530/JOE-16-0488. PubMed DOI

Yang X., Zhou Y., Peng S., Wu L., Lin H.Y., Wang S., Wang H. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144:234–244. doi: 10.1530/REP-11-0371. PubMed DOI

Nie M., Yu S., Peng S., Fang Y., Wang H., Yang X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD51. Biol. Reprod. 2015;98:1–10. doi: 10.1095/biolreprod.115.130690. PubMed DOI

Cho S.H., An H.J., Kim K.A., Ko J.J., Kim J.H., Kim Y.R., Ahn E.H., Rah H.C., Lee W.S., Kim N.K. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. PLoS ONE. 2017;12:e0183479. doi: 10.1371/journal.pone.0183479. PubMed DOI PMC

Cho S.H., Ahn E.H., An H.J., Kim J.H., Ko J.J., Kim Y.R., Lee W.S., Kim N.K. Association of mir-938G>A polymorphisms with primary ovarian insufficiency (POI)-related gene expression. Int. J. Mol. Sci. 2017;18:1255. doi: 10.3390/ijms18061255. PubMed DOI PMC

Zhao G., Zhou X., Fang T., Hou Y., Hu Y. Hyaluronic acid promotes the expression of progesterone receptor membrane component 1 via epigenetic silencing of miR-139-5p in human and rat granulosa cells. Biol. Reprod. 2014;91:116. doi: 10.1095/biolreprod.114.120295. PubMed DOI

Naji M., Aleyasin A., Nekoonam S., Arefian E., Mahdian R., Amidi F. Differential Expression of miR-93 and miR-21 in Granulosa Cells and Follicular Fluid of Polycystic Ovary Syndrome Associating with Different Phenotypes. Sci. Rep. 2017:7. doi: 10.1038/s41598-017-13250-1. PubMed DOI PMC

Zhang C.L., Wang H., Yan C.Y., Gao X.F., Ling X.J. Deregulation of RUNX2 by miR-320a deficiency impairs steroidogenesis in cumulus granulosa cells from polycystic ovary syndrome (PCOS) patients. Biochem. Biophys. Res. Commun. 2017;482:1469–1476. doi: 10.1016/j.bbrc.2016.12.059. PubMed DOI

Xiang Y., Song Y., Li Y., Zhao D., Ma L., Tan L. miR-483 is down-regulated in polycystic ovarian syndrome and inhibits KGN cell proliferation via targeting insulin-like growth factor 1 (IGF1) Med. Sci. Monit. 2016;22:3383–3393. doi: 10.12659/MSM.897301. PubMed DOI PMC

Cai G., Ma X., Chen B., Huang Y., Liu S., Yang H., Zou W. MicroRNA-145 Negatively Regulates Cell Proliferation Through Targeting IRS1 in Isolated Ovarian Granulosa Cells from Patients with Polycystic Ovary Syndrome. Reprod. Sci. 2017;24:902–910. doi: 10.1177/1933719116673197. PubMed DOI

De La Fuente R., Eppig J.J. Transcriptional activity of the mouse oocyte genome: Companion granulosa cells modulate transcription and chromatin remodeling. Dev. Biol. 2001;229:224–236. doi: 10.1006/dbio.2000.9947. PubMed DOI

Brower P.T., Schultz R.M. Intercellular communication between granulosa cells and mouse oocytes: Existence and possible nutritional role during oocyte growth. Dev. Biol. 1982;90:144–153. doi: 10.1016/0012-1606(82)90219-6. PubMed DOI

Amsterdam A., Tajima K., Frajese V., Seger R. Analysis of signal transduction stimulated by gonadotropins in granulosa cells. Mol. Cell. Endocrinol. 2003;202:77–80. PubMed

Kocherova I., Bryl R., Crha I., Ventruba P., Zakova J., Ješeta M. The extracellular reactive oxygen species levels in primary in vitro culture of human ovarian granulosa and cumulus cells. Med. J. Cell Biol. 2020;8:112–117. doi: 10.2478/acb-2020-0014. DOI

Brazert M., Kranc W., Jopek K., Kempisty B., Pawelczyk L. New markers of human cumulus oophorus cells cultured in vitro-transcriptomic profile. Med. J. Cell Biol. 2020;8:60–72. doi: 10.2478/acb-2020-0007. DOI

Ismail R.S., Okawara Y., Fryer J.N., Vanderhyden B.C. Hormonal regulation of the ligand for c-kit in the rat ovary and its effects on spontaneous oocyte meiotic maturation. Mol. Reprod. Dev. 1996;43:458–469. doi: 10.1002/(SICI)1098-2795(199604)43:4<458::AID-MRD8>3.0.CO;2-O. PubMed DOI

Manova K., Huang E.J., Angeles M., De Leon V., Sanchez S., Pronovost S.M., Besmer P., Bachvarova R.F. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev. Biol. 1993;157:85–99. doi: 10.1006/dbio.1993.1114. PubMed DOI

Laitinen M., Rutanen E.M., Ritvos O. Expression of c-kit ligand messenger ribonucleic acids in human ovaries and regulation of their steady state levels by gonadotropins in cultured granulosa-luteal cells. Endocrinology. 1995;136:4407–4414. doi: 10.1210/endo.136.10.7545103. PubMed DOI

Parrott J.A., Skinner M.K. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140:4262–4271. doi: 10.1210/endo.140.9.6994. PubMed DOI

Thomas F.H., Ethier J.F., Shimasaki S., Vanderhyden B.C. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology. 2005;146:941–949. doi: 10.1210/en.2004-0826. PubMed DOI

Huang E.J., Manova K., Packer A.I., Sanchez S., Bachvarova R.F., Besmer P. The murine Steel Panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev. Biol. 1993;157:100–109. doi: 10.1006/dbio.1993.1115. PubMed DOI

Yoshida H., Takakura N., Kataoka H., Kunisada T., Okamura H., Nishikawa S.I. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev. Biol. 1997;184:122–137. doi: 10.1006/dbio.1997.8503. PubMed DOI

Jin X., Han C.S., Zhang X.S., Yuan J.X., Hu Z.Y., Liu Y.X. Signal transduction of stem cell factor in promoting early follicle development. Mol. Cell. Endocrinol. 2005;229:3–10. doi: 10.1016/j.mce.2004.10.006. PubMed DOI

Reddy P., Liu L., Adhikari D., Jagarlamudi K., Rajareddy S., Shen Y., Du C., Tang W., Hämäläinen T., Peng S.L., et al. Oocyte-specific deletion of pten causes premature activation of the primordial follicle pool. Science. 2008;319:611–613. doi: 10.1126/science.1152257. PubMed DOI

Reddy P., Shen L., Ren C., Boman K., Lundin E., Ottander U., Lindgren P., Liu Y.X., Sun Q.Y., Liu K. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev. Biol. 2005;281:160–170. doi: 10.1016/j.ydbio.2005.02.013. PubMed DOI

Honda A., Hirose M., Inoue K., Hiura H., Miki H., Ogonuki N., Sugimoto M., Abe K., Kanatsu-Shinohara M., Kono T., et al. Large-scale production of growing oocytes in vitro from neonatal mouse ovaries. Int. J. Dev. Biol. 2009;53:605–613. doi: 10.1387/ijdb.082607ah. PubMed DOI

Salustri A., Ulisse S., Yanagishita M., Hascall V.C. Hyaluronic acid synthesis by mural granulosa cells and cumulus cells in vitro is selectively stimulated by a factor produced by oocytes and by transforming growth factor-β. J. Biol. Chem. 1990;265:19517–19523. doi: 10.1016/S0021-9258(17)45403-2. PubMed DOI

Diaz F.J., O’Brien M.J., Wigglesworth K., Eppig J.J. The preantral granulosa cell to cumulus cell transition in the mouse ovary: Development of competence to undergo expansion. Dev. Biol. 2006;299:91–104. doi: 10.1016/j.ydbio.2006.07.012. PubMed DOI

Dragovic R.A., Ritter L.J., Schulz S.J., Amato F., Armstrong D.T., Gilchrist R.B. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology. 2005;146:2798–2806. doi: 10.1210/en.2005-0098. PubMed DOI

Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008;14:159–177. doi: 10.1093/humupd/dmm040. PubMed DOI

Eppig J.J., Wigglesworth K., Pendola F., Hirao Y. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol. Reprod. 1997;56:976–984. doi: 10.1095/biolreprod56.4.976. PubMed DOI

Li R., Norman R.J., Armstrong D.T., Gilchrist R.B. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 2000;63:839–845. doi: 10.1095/biolreprod63.3.839. PubMed DOI

Hussein T.S., Froiland D.A., Amato F., Thompson J.G., Gilchrist R.B. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 2005;118:5257–5268. doi: 10.1242/jcs.02644. PubMed DOI

Sibiak R., Bryl R., Stefańska K., Chermuła B., Pieńkowski W., Jeseta M., Pawelczyk L., Mozdziak P., Spaczyński R.Z., Kempisty B. Expression of the apoptosis regulatory gene family in the long-term in vitro cultured human cumulus cells. Med. J. Cell Biol. 2021;9:8–13. doi: 10.2478/acb-2021-0002. DOI

Kocherova I., Stefańska K., Bryl R., Perek J., Pieńkowski W., Zakova J., Crha I., Ventruba P., Mozdziak P., Ješeta M. Apoptosis-related genes expression in primary in vitro culture of human ovarian granulosa cells. Med. J. Cell Biol. 2020;8:176–182. doi: 10.2478/acb-2020-0023. DOI

Dong J., Albertini D.F., Nishimori K., Kumar T.R., Lu N., Matzuk M.M. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–535. doi: 10.1038/383531a0. PubMed DOI

Yan C., Wang P., Demayo J., Demayo F.J., Elvin J.A., Carino C., Prasad S.V., Skinner S.S., Dunbar B.S., Dube J.L., et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 2001;15:854–866. doi: 10.1210/mend.15.6.0662. PubMed DOI

Matzuk M.M., Burns K.H., Viveiros M.M., Eppig J.J. Intercellular communication in the mammalian ovary: Oocytes carry the conversation. Science (80-. ). 2002;296:2178–2180. doi: 10.1126/science.1071965. PubMed DOI

Hanrahan J.P., Gregan S.M., Mulsant P., Mullen M., Davis G.H., Powell R., Galloway S.M. Mutations in the Genes for Oocyte-Derived Growth Factors GDF9 and BMP15 Are Associated with Both Increased Ovulation Rate and Sterility in Cambridge and Belclare Sheep (Ovis aries) Biol. Reprod. 2004;70:900–909. doi: 10.1095/biolreprod.103.023093. PubMed DOI

Sugiura K., Su Y.Q., Diaz F.J., Pangas S.A., Sharma S., Wigglesworth K., O’Brien M.J., Matzuk M.M., Shimasaki S., Eppig J.J. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134:2593–2603. doi: 10.1242/dev.006882. PubMed DOI

Mottershead D.G., Ritter L.J., Gilchrist R.B. Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15. Mol. Hum. Reprod. 2012;18:121–128. doi: 10.1093/molehr/gar056. PubMed DOI PMC

Rybska M., Knap S., Stefańska K., Jankowski M., Chamier-Gliszczyńska A., Popis M., Jeseta M., Bukowska D., Antosik P., Kempisty B., et al. Transforming growth factor (TGF)—Is it a key protein in mammalian reproductive biology? Med. J. Cell Biol. 2018;6:127–130. doi: 10.2478/acb-2018-0020. DOI

Joyce I.M., Clark A.T., Pendola F.L., Eppig J.J. Comparison of recombinant growth differentiation factor-9 and oocyte regulation of KIT ligand messenger ribonucleic acid expression in mouse ovarian follicles. Biol. Reprod. 2000;63:1669–1675. doi: 10.1095/biolreprod63.6.1669. PubMed DOI

Bryja A., Pieńkowski W., Stefańska K., Chermuła B., Bryl R., Wieczorkiewicz M., Kulus J., Wąsiatycz G., Bukowska D., Ratajczak K., et al. Analysis of TGFB1, CD105 and FSP1 expression in human granulosa cells during a 7-day primary in vitro culture. Med. J. Cell Biol. 2020;8:152–157. doi: 10.2478/acb-2020-0019. DOI

Baena V., Terasaki M. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci. Rep. 2019;9:1262. doi: 10.1038/s41598-018-37766-2. PubMed DOI PMC

Macaulay A.D., Gilbert I., Caballero J., Barreto R., Fournier E., Tossou P., Sirard M.A., Clarke H.J., Khandjian É.W., Richard F.J., et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol. Reprod. 2014;91:90. doi: 10.1095/biolreprod.114.119867. PubMed DOI

Albertini D.F., Rider V. Patterns of intercellular connectivity in the mammalian cumulus-oocyte complex. Microsc. Res. Tech. 1994;27:125–133. doi: 10.1002/jemt.1070270206. PubMed DOI

Motta P.M., Correr S., Makabe S., Naguro T. Oocyte Follicle Cells Association during Development of Human Ovarian Follicle. A Study by High Resolution Scanning and Transmission Electron Microscopy. Arch. Histol. Cytol. 1994;57:369–394. doi: 10.1679/aohc.57.369. PubMed DOI

Simon A.M., Goodenough D.A. Diverse functions of vertebrate gap junctions. Trends Cell Biol. 1998;8:477–483. doi: 10.1016/S0962-8924(98)01372-5. PubMed DOI

Willecke K., Eiberger J., Degen J., Eckardt D., Romualdi A., Güldenagel M., Deutsch U., Söhl G. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 2002;383:725–737. doi: 10.1515/BC.2002.076. PubMed DOI

Kidder G.M., Vanderhyden B.C. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 2010;88:399–413. doi: 10.1139/Y10-009. PubMed DOI PMC

Pelland A.M.D., Corbett H.E., Baltz J.M. Amino acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol. Reprod. 2009;81:1041–1054. doi: 10.1095/biolreprod.109.079046. PubMed DOI PMC

Purcell S.H., Moley K.H. Glucose transporters in gametes and preimplantation embryos. Trends Endocrinol. Metab. 2009;20:483–489. doi: 10.1016/j.tem.2009.06.006. PubMed DOI PMC

Augustin R., Pocar P., Navarrete-Santos A., Wrenzycki C., Gandolfi F., Niemann H., Fischer B. Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Mol. Reprod. Dev. 2001;60:370–376. doi: 10.1002/mrd.1099. PubMed DOI

Orisaka M., Tajima K., Tsang B.K., Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J. Ovarian Res. 2009;2:9. doi: 10.1186/1757-2215-2-9. PubMed DOI PMC

Murray A.A., Gosden R.G., Allison V., Spears N. Effect of androgens on the development of mouse follicles growing in vitro. J. Reprod. Fertil. 1998;113:27–33. doi: 10.1530/jrf.0.1130027. PubMed DOI

Orisaka M., Jiang J.Y., Orisaka S., Kotsuji F., Tsang B.K. Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology. 2009;150:2740–2748. doi: 10.1210/en.2008-1536. PubMed DOI

Mattioli M., Gloria A., Turriani M., Berardinelli P., Russo V., Nardinocchi D., Curini V., Baratta M., Martignani E., Barboni B. Osteo-regenerative potential of ovarian granulosa cells: An in vitro and in vivo study. Theriogenology. 2012;77:1425–1437. doi: 10.1016/j.theriogenology.2011.11.008. PubMed DOI

Chandramohan Y., Jeganathan K., Sivanesan S., Koka P., Amritha T.M.S., Vimalraj S., Dhanasekaran A. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration. Life Sci. 2021;264:118502. doi: 10.1016/j.lfs.2020.118502. PubMed DOI

Tian C., Liu L., Ye X., Fu H., Sheng X., Wang L., Wang H., Heng D., Liu L. Functional Oocytes Derived from Granulosa Cells. Cell Rep. 2019;29:4256–4267.e9. doi: 10.1016/j.celrep.2019.11.080. PubMed DOI

Madkour A., Bouamoud N., Kaarouch I., Louanjli N., Saadani B., Assou S., Aboulmaouahib S., Sefrioui O., Amzazi S., Copin H., et al. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome. Fertil. Steril. 2018;110:710–719. doi: 10.1016/j.fertnstert.2018.04.038. PubMed DOI

Atrabi M.J., Akbarinejad V., Khanbabaee R., Dalman A., Amorim C.A., Najar-Asl M., Valojerdi M.R., Fathi R. Formation and activation induction of primordial follicles using granulosa and cumulus cells conditioned media. J. Cell. Physiol. 2019;234:10148–10156. doi: 10.1002/jcp.27681. PubMed DOI

Taheri M., Saki G., Nikbakht R., Eftekhari A.R. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol. Int. 2021;45:127–139. doi: 10.1002/cbin.11475. PubMed DOI

Lee Y.M., Kim T.H., Lee J.H., Lee W.J., Jeon R.H., Jang S.J., Ock S.A., Lee S.L., Park B.W., Rho G.J. Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. J. Ovarian Res. 2016;9:24. doi: 10.1186/s13048-016-0233-z. PubMed DOI PMC

Kordus R.J., LaVoie H.A. Granulosa cell biomarkers to predict pregnancy in ART: Pieces to solve the puzzle. Reproduction. 2017;153:R69–R83. doi: 10.1530/REP-16-0500. PubMed DOI

Luddi A., Gori M., Marrocco C., Capaldo A., Pavone V., Bianchi L., Boschi L., Morgante G., Piomboni P., de Leo V. Matrix metalloproteinases and their inhibitors in human cumulus and granulosa cells as biomarkers for oocyte quality estimation. Fertil. Steril. 2018;109:930–939.e3. doi: 10.1016/j.fertnstert.2018.01.030. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...