Transcriptomic analysis of expression of genes regulating cell cycle progression in porcine ovarian granulosa cells during short-term in vitro primary culture
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2016/21/B/NZ9/03535
Narodowe Centrum Nauki
PubMed
32157392
PubMed Central
PMC7299926
DOI
10.1007/s00418-020-01860-2
PII: 10.1007/s00418-020-01860-2
Knihovny.cz E-zdroje
- Klíčová slova
- Granulosa cells, Microarray, Ovarian follicle, Pig, Primary culture,
- MeSH
- buněčný cyklus genetika MeSH
- folikulární buňky cytologie MeSH
- kultivované buňky MeSH
- ovariální folikul cytologie MeSH
- prasata MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The primary function of ovarian granulosa cells (GCs) is the support of oocytes during maturation and development. Molecular analyses of granulosa cell-associated processes, leading to improvement of understanding of the cell cycle events during the formation of ovarian follicles (folliculogenesis), may be key to improve the in vitro fertilization procedures. Primary in vitro culture of porcine GCs was employed to examine the changes in the transcriptomic profile of genes belonging to "cell cycle", "cell division", "cell cycle process", "cell cycle phase transition", "cell cycle G1/S phase transition", "cell cycle G2/M phase transition" and "cell cycle checkpoint" ontology groups. During the analysis, microarrays were employed to study the transcriptome of GCs, analyzing the total RNA of cells from specific periods of in vitro cultures. This research was based on material obtained from 40 landrace gilts of similar weight, age and the same living conditions. RNA was isolated at specific timeframes: before the culture was established (0 h) and after 48 h, 96 h and 144 h in vitro. Out of 133 differentially expressed genes, we chose the 10 most up-regulated (SFRP2, PDPN, PDE3A, FGFR2, PLK2, THBS1, ETS1, LIF, ANXA1, TGFB1) and the 10 most downregulated (IGF1, NCAPD2, CABLES1, H1FOO, NEK2, PPAT, TXNIP, NUP210, RGS2 and CCNE2). Some of these genes known to play key roles in the regulation of correct cell cycle passage (up-regulated SFRP2, PDE3A, PLK2, LIF and down-regulated CCNE2, TXNIP, NEK2). The data obtained provide a potential reference for studies on the process of mammalian folliculogenesis, as well as suggests possible new genetic markers for cell cycle progress in in vitro cultured porcine granulosa cells.
Department of Anatomy Poznan University of Medical Sciences 6 Święcickiego St 60 781 Poznan Poland
Department of Histology and Embryology Wroclaw Medical University Wrocław Poland
Department of Toxicology Poznan University of Medical Sciences Poznan Poland
Division of Anatomy and Histology University of Zielona Gora Zielona Gora Poland
Physiology Graduate Program North Carolina State University Raleigh NC USA
Zobrazit více v PubMed
Bertoli C, Skotheim JM, de Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518–528. doi: 10.1038/nrm3629. PubMed DOI PMC
Bønsdorff T, Gautier M, Farstad W, et al. Mapping of the bovine genes of the de novo AMP synthesis pathway. Anim Genet. 2004;35:438–444. doi: 10.1111/j.1365-2052.2004.01201.x. PubMed DOI
Borys S, Brązert M, Jankowski M, et al. Enzyme linked receptor protein signaling pathway is one of the ontology groups that are highly up-regulated in porcine oocytes before in vitro maturation. J Biol Regul Homeost Agents. 2018;32:21–35. PubMed
Borys-Wójcik S, Kocherova I, Celichowski P, et al. Protein oligomerization is the biochemical process highly up-regulated in porcine oocytes before in vitro maturation (IVM) Med J Cell Biol. 2018;6:155–162. doi: 10.2478/acb-2018-0025. DOI
Budna J, Celichowski P, Karimi P, et al. Does porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Adv Cell Biol. 2017;5:1–14. doi: 10.1515/acb-2017-0001. DOI
Budna J, Celichowski P, Bryja A, et al. Expression changes in fatty acid metabolic processrelated genes in porcine oocytes during in vitro maturation. Med J Cell Biol. 2018;6:48–54. doi: 10.2478/acb-2018-0009. DOI
Chamier-Gliszczyńska A, Brązert M, Sujka-Kordowska P, et al. Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture—a transcriptomic study. Med J Cell Biol. 2018;6:163–173. doi: 10.2478/acb-2018-0026. DOI
Chermuła B, Brązert M, Iżycki D, et al. New gene markers of angiogenesis and blood vessels development in porcine ovarian granulosa cells during short-term primary culture in vitro. Biomed Res Int. 2019;2019:6545210. doi: 10.1155/2019/6545210. PubMed DOI PMC
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Chrusciel M, Rekawiecki R, Ziecik AJ, Andronowska A. mRNA and protein expression of FGF-1, FGF-2 and their receptors in the porcine umbilical cord during pregnancy. Folia Histochem Cytobiol. 2011;48:572–580. doi: 10.2478/v10042-010-0073-4. PubMed DOI
Dang-Nguyen TQ, Haraguchi S, Kikuchi K, et al. Leukemia inhibitory factor promotes porcine oocyte maturation and is accompanied by activation of signal transducer and activator of transcription 3. Mol Reprod Dev. 2014;81:230–239. doi: 10.1002/mrd.22289. PubMed DOI
Dyszkiewicz-Konwińska M, Nawrocki MJ, Huang Y, et al. New gene markers for metabolic processes and homeostasis in porcine buccal pouch mucosa during cells long term-cultivation—a primary culture approach. Int J Mol Sci. 2018 doi: 10.3390/ijms19041027. PubMed DOI PMC
Ekart J, McNatty K, Hutton J, Pitman J. Ranking and selection of MII oocytes in human ICSI cycles using gene expression levels from associated cumulus cells. Hum Reprod. 2013;28:2930–2942. doi: 10.1093/humrep/det357. PubMed DOI
Emmanuel C, Gava N, Kennedy C, et al. Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS ONE. 2011;6:e17617. doi: 10.1371/journal.pone.0017617. PubMed DOI PMC
Filus A, Zdrojewicz Z. Insulin-like growth factor-1 (IGF-1)—structure and the role in the human body. Pediatr Endocrinol Diabetes Metab. 2014;20:161–169. doi: 10.18544/PEDM-20.04.0016. PubMed DOI
Fujioka T, Takebayashi Y, Ito M, Uchida T. Nek2 expression and localization in porcine oocyte during maturation. Biochem Biophys Res Commun. 2000;279:799–802. doi: 10.1006/bbrc.2000.4021. PubMed DOI
Garrett-Sinha LA. Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci. 2013;70:3375–3390. doi: 10.1007/s00018-012-1243-7. PubMed DOI PMC
Gilchrist R, Ritter L, Armstrong D. Oocyte–somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82–83:431–446. doi: 10.1016/J.ANIREPROSCI.2004.05.017. PubMed DOI
Gomez-Cavazos JS, Hetzer MW. The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J Cell Biol. 2015;208:671–681. doi: 10.1083/jcb.201410047. PubMed DOI PMC
Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Rodgers RJ. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles. PLoS ONE. 2015;10:e0119800. doi: 10.1371/JOURNAL.PONE.0119800. PubMed DOI PMC
Hernandez-Gonzalez I, Gonzalez-Robayna I, Shimada M, et al. Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process? Mol Endocrinol. 2006;20:1300–1321. doi: 10.1210/me.2005-0420. PubMed DOI
Ishido M. Overexpression of Bcl-2 inhibits nuclear localization of annexin I during tumor necrosis factor-alpha-mediated apoptosis in porcine renal LLC-PK1 cells. Regul Pept. 2005;124:45–51. doi: 10.1016/j.regpep.2004.06.027. PubMed DOI
Jankowski M, Dyszkiewicz-Konwińska M, Budna J, et al. Does migrative and proliferative capability of epithelial cells reflect cellular developmental competence? Med J Cell Biol. 2018;6:1–7. doi: 10.2478/acb-2018-0001. DOI
Kempisty B, Ziółkowska A, Piotrowska H, et al. Short-term cultivation of porcine cumulus cells influences the cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) protein expression—a real-time cell proliferation approach. J Reprod Dev. 2013;59:339–345. doi: 10.1262/JRD.2012-162. PubMed DOI PMC
Kempisty B, Ziółkowska A, Ciesiółka S, et al. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J Biol Regul Homeost Agents. 2014;28:625–635. PubMed
Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI
Kossowska-Tomaszczuk K, Pelczar P, Güven S, et al. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 2010;16:2063–2073. doi: 10.1089/ten.tea.2009.0684. PubMed DOI
Kranc W, Chachula A, Wojtanowicz-Markiewicz K, et al. The insight into developmental capacity of mammalian COCs and cumulus-granulosa cells-recent studies and perspectives. Austin J Invit Fertilzation. 2015;2:1023.
Kranc W, Chachuła A, Bryja A, et al. Selected molecular and physiological aspects of mammalian ovarian granulosa cells in primary culture. Med Weter. 2016;72:723–727. doi: 10.21521/mw.5606. DOI
Kranc W, Budna J, Kahan R, et al. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents. 2017;31:1–8. PubMed
Kranc W, Brązert M, Ożegowska K, et al. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med J Cell Biol. 2018 doi: 10.2478/acb-2018-0015. DOI
Kulus M, Józkowiak M, Kulus J, et al. “Cell cycle process”, “cell division” and “cell proliferation” belong to ontology groups highly regulated during long-term culture of porcine oviductal epithelial cells. Med J Cell Biol. 2019;7:15–24. doi: 10.2478/acb-2019-0003. DOI
Kulus M, Kulus J, Popis M, et al. “Cell cycle” and ‘cell death’—related genes are differentially expressed during long-term in vitro real-time cultivation of porcine oviductal epithelial cells. Med J Cell Biol. 2019;7:90–99. doi: 10.2478/acb-2019-0012. DOI
Lee H-J, Sakamoto H, Luo H, et al. Loss of CABLES1, a cyclin-dependent kinase-interacting protein that inhibits cell cycle progression, results in germline expansion at the expense of oocyte quality in adult female mice. Cell Cycle. 2007;6:2678–2684. doi: 10.4161/cc.6.21.4820. PubMed DOI
Lee S-Y, Lee H-S, Kim E-Y, et al. Thioredoxin-interacting protein regulates glucose metabolism and affects cytoplasmic streaming in mouse oocytes. PLoS ONE. 2013;8:e70708. doi: 10.1371/journal.pone.0070708. PubMed DOI PMC
Li F, Jo M, Curry TE, Liu J. Hormonal induction of polo-like kinases (Plks) and impact of Plk2 on cell cycle progression in the rat ovary. PLoS ONE. 2012;7:e41844. doi: 10.1371/journal.pone.0041844. PubMed DOI PMC
Magoffin DA. Ovarian theca cell. Int J Biochem Cell Biol. 2005;37:1344–1349. doi: 10.1016/J.BIOCEL.2005.01.016. PubMed DOI
Martin C-A, Murray JE, Carroll P, et al. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev. 2016;30:2158–2172. doi: 10.1101/gad.286351.116. PubMed DOI PMC
Massagué J. G1 cell-cycle control and cancer. Nature. 2004;432:298–306. doi: 10.1038/nature03094. PubMed DOI
Mattioli M, Gloria A, Turriani M, et al. Osteo-regenerative potential of ovarian granulosa cells: an in vitro and in vivo study. Theriogenology. 2012;77:1425–1437. doi: 10.1016/j.theriogenology.2011.11.008. PubMed DOI
Meinsohn M-C, Morin F, Bertolin K, et al. The orphan nuclear receptor liver homolog receptor-1 (Nr5a2) regulates ovarian granulosa cell proliferation. J Endocr Soc. 2018;2:24–41. doi: 10.1210/js.2017-00329. PubMed DOI PMC
Ożegowska K, Dyszkiewicz-Konwińska M, Celichowski P, et al. Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs. Theriogenology. 2018;121:122–133. doi: 10.1016/J.THERIOGENOLOGY.2018.08.019. PubMed DOI
Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 may induce pancreatic cancer progression as a key player of extracellular vesicles effects as evidenced in the in vitro MIA PaCa-2 model system. Int J Mol Sci. 2018;19:3878. doi: 10.3390/ijms19123878. PubMed DOI PMC
Rybska M, Knap S, Jankowski M, et al. Cytoplasmic and nuclear maturation of oocytes in mammals—living in the shadow of cells developmental capability. Med J Cell Biol. 2018;6:13–17. doi: 10.2478/acb-2018-0003. DOI
Rybska M, Knap S, Jankowski M, et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med J Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI
Rybska M, Knap S, Jankowski M, et al. Pathogenesis and pathophysiology of ovarian follicular cysts in mammals. Med J Cell Biol. 2018;6:120–124. doi: 10.2478/acb-2018-0019. DOI
Sakamoto H, Friel AM, Wood AW, et al. Mechanisms of Cables 1 gene inactivation in human ovarian cancer development. Cancer Biol Ther. 2008;7:180–188. doi: 10.4161/cbt.7.2.5253. PubMed DOI
Salhab M, Dhorne-Pollet S, Auclair S, et al. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev. 2013;80:166–182. doi: 10.1002/mrd.22148. PubMed DOI
Sasseville M, Côté N, Guillemette C, Richard FJ. New insight into the role of phosphodiesterase 3A in porcine oocyte maturation. BMC Dev Biol. 2006;6:47. doi: 10.1186/1471-213X-6-47. PubMed DOI PMC
Sasseville M, Côté N, Vigneault C, et al. 3′5′-Cyclic adenosine monophosphate-dependent up-regulation of phosphodiesterase type 3A in porcine cumulus cells. Endocrinology. 2007;148:1858–1867. doi: 10.1210/en.2006-1257. PubMed DOI
Sheng J, Yang Y, Liu W, et al. Location of oocyte-specific linker histone in pig ovaries at different developmental stages postpartum. Theriogenology. 2015;83:1203–1212. doi: 10.1016/J.THERIOGENOLOGY.2014.12.027. PubMed DOI
Shimizu T, Hirai Y, Miyamoto A. Expression of cyclins and cyclin-dependent kinase inhibitors in granulosa cells from bovine ovary. Reprod Domest Anim. 2013;48:e65–e69. doi: 10.1111/rda.12177. PubMed DOI
Shindo K, Aishima S, Ohuchida K, et al. Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol Cancer. 2013;12:168. doi: 10.1186/1476-4598-12-168. PubMed DOI PMC
Sirotkin AV, Florkovičová I, Schaeffer H-J, et al. Interrelationships between ovarian follicles grown in culture and possible mediators. Reprod Biol. 2017;17:97–104. doi: 10.1016/j.repbio.2017.01.005. PubMed DOI
Solár P, Sytkowski AJ. Differentially expressed genes associated with cisplatin resistance in human ovarian adenocarcinoma cell line A2780. Cancer Lett. 2011;309:11–18. doi: 10.1016/j.canlet.2011.05.008. PubMed DOI
Terenina E, Fabre S, Bonnet A, et al. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol Genomics. 2017;49:67–80. doi: 10.1152/physiolgenomics.00069.2016. PubMed DOI
Trejter M, Hochol A, Tyczewska M, et al. Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis. Int J Mol Med. 2015;35:702–714. doi: 10.3892/ijmm.2015.2064. PubMed DOI PMC
Varras M, Griva T, Kalles V, et al. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART? J Ovarian Res. 2012;5:36. doi: 10.1186/1757-2215-5-36. PubMed DOI PMC
Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI
Wollenhaupt K, Welter H, Einspanier R, et al. Expression of epidermal growth factor receptor (EGF-R), vascular endothelial growth factor receptor (VEGF-R) and fibroblast growth factor receptor (FGF-R) systems in porcine oviduct and endometrium during the time of implantation. J Reprod Dev. 2004;50:269–278. doi: 10.1262/jrd.50.269. PubMed DOI
Wollenhaupt K, Welter H, Brüssow K-P, Einspanier R. Regulation of endometrial fibroblast growth factor 7 (FGF-7) and its receptor FGFR2IIIb in gilts after sex steroid replacements, and during the estrous cycle and early gestation. J Reprod Dev. 2005;51:509–519. doi: 10.1262/jrd.17013. PubMed DOI
Yuan Y, Lee K, Park K-W, et al. Cell cycle synchronization of leukemia inhibitory factor (LIF)-dependent porcine-induced pluripotent stem cells and the generation of cloned embryos. Cell Cycle. 2014;13:1265–1276. doi: 10.4161/cc.28176. PubMed DOI PMC
Zamberlam G, Lapointe E, Abedini A, et al. SFRP4 is a negative regulator of ovarian follicle development and female fertility. Endocrinology. 2019;160:1561–1572. doi: 10.1210/en.2019-00212. PubMed DOI PMC