Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30145542
DOI
10.1016/j.theriogenology.2018.08.019
PII: S0093-691X(18)30680-0
Knihovny.cz E-zdroje
- Klíčová slova
- In vitro maturation, Microarrays, Porcine oocyte, Sex differentiation,
- MeSH
- IVM techniky * MeSH
- oocyty růst a vývoj MeSH
- prasata genetika MeSH
- procesy určující pohlaví genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- výpočetní biologie MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The processes underlying maturation of mammalian oocytes are considered crucial for the oocytes ability to undergo monospermic fertilization. The same factors of influence are suggested to impact the development of sex associated characteristics, allowing sex differentiation to progress during embryonic growth. The primary aim of the study was to analyze the gene ontology groups involved in regulation of porcine oocytes' response to endogenous stimuli. The results obtained would indicate potential genes influencing sex differentiation. Additionally, they could help to determine new genetic markers, expression profile of which is substantially regulated during porcine oocytes' in vitro maturation. To achieve that, porcine oocytes were collected for analysis before and after in vitro maturation. Pigs were used as they are a readily available model that presents significant similarity to humans in terms of physiology and anatomy. Microarray analysis of oocytes, before and after in vitro maturation was performed and later validated by RT-qPCR. We have particularly detected and analyzed genes belonging to gene ontology groups associated with hormonal stimulation during maturation of the oocytes, that exhibited significant change in expression (fold change ≥ |2|; p < 0.05) namely "Female sex differentiation" (CCND2, MMP14, VEGFA, FST, INHBA, NR5A1), "Response to endogenous stimulus" (INSR, ESR1, CCND2, TXNIP, TACR3, MMP14, FOS, AR, EGR2, IGFBP7, TGFBR3, BTG2, PLD1, PHIP, UBE2B) and "Response to estrogen stimulus" (INSR, ESR1, CCND2, IHH, TXNIP, TACR3, MMP14). Some of them were characteristic for just one of the described ontologies, while some belonged into multiple ontological terms. The genes were analyzed, with their relation to the processes of interest explained. Overall, the study provides us with a range of genes that might serve as molecular markers of in vitro maturation associated processes of the oocytes. This knowledge might serve as a reference for further studies and, after further validation, as a potentially useful knowledge in assessment of the oocytes during assisted reproduction processes.
Department of Anatomy Poznan University of Medical Sciences Poznan Poland
Department of Animal Physiology University of Warmia and Mazury Olsztyn Poland
Department of Histology and Embryology Poznan University of Medical Sciences Poznan Poland
Department of Obstetrics and Gynecology University Hospital and Masaryk University Czech Republic
Department of Pathophysiology Poznań University of Medical Sciences Poznan Poland
Veterinary Center Nicolaus Copernicus University in Torun Torun Poland
Citace poskytuje Crossref.org