Innovative Approach in the Cryogenic Freezing Medium for Mesenchymal Stem Cells

. 2022 Apr 20 ; 12 (5) : . [epub] 20220420

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35625538

The physical stresses during cryopreservation affect stem cell survival and further proliferation. To minimize or prevent cryoinjury, cryoprotective agents (CPAs) are indispensable. Despite the widespread use of 10% dimethyl sulfoxide (DMSO), there are concerns about its potential adverse effects. To bypass those effects, combinations of CPAs have been investigated. This study aimed to verify whether high-molecular-hyaluronic acid (HMW-HA) serves as a cryoprotectant when preserving human mesenchymal stem cells (hMSCs) to reduce the DMSO concentration in the cryopreservation medium. We studied how 0.1% or 0.2% HMW-HA combined with reduced DMSO concentrations (from 10% to 5%, and 3%) affected total cell count, viability, immunophenotype, and differentiation potential post-cryopreservation. Immediately after cell revival, the highest total cell count was observed in 10% DMSO-stored hMSC. However, two weeks after cell cultivation an increased cell count was seen in the HMW-HA-stored groups along with a continued increase in hMSCs stored using 3% DMSO and 0.1% HMW-HA. The increased total cell count corresponded to elevated expression of stemness marker CD49f. The HA-supplemented cryomedium did not affect the differential potential of hMSC. Our results will participate in producing a ready-to-use product for cryopreservation of mesenchymal stem cells.

Zobrazit více v PubMed

Gronthos S., Mankani M., Brahim J., Robey P.G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 2000;97:13625–13630. doi: 10.1073/pnas.240309797. PubMed DOI PMC

Nuti N., Corallo C., Chan B.M., Ferrari M., Gerami-Naini B. Multipotent Differentiation of Human Dental Pulp Stem Cells: A Literature Review. Stem Cell Rev. Rep. 2016;12:511–523. doi: 10.1007/s12015-016-9661-9. PubMed DOI

Pilbauerova N., Schmidt J., Soukup T., Koberova Ivancakova R., Suchanek J. The Effects of Cryogenic Storage on Human Dental Pulp Stem Cells. Int. J. Mol. Sci. 2021;22:4432. doi: 10.3390/ijms22094432. PubMed DOI PMC

Kumar A., Bhattacharyya S., Rattan V. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank. 2015;16:513–522. doi: 10.1007/s10561-015-9498-5. PubMed DOI

Yan M., Nada O.A., Smeets R., Gosau M., Friedrich R.E., Kluwe L. Compare features of human dental pulp cells cultured from pulp tissues with and without cryopreservation. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2020;4:445–451. doi: 10.5507/bp.2020.061. PubMed DOI

Davies O.G., Smith A.J., Cooper P.R., Shelton R.M., Scheven B.A. The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. Cryobiology. 2014;69:342–347. doi: 10.1016/j.cryobiol.2014.08.003. PubMed DOI

Perry B.C., Zhou D., Wu X., Yang F.C., Byers M.A., Chu T.M., Hockema J.J., Woods E.J., Goebel W.S. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng. Part C Methods. 2008;14:149–156. doi: 10.1089/ten.tec.2008.0031. PubMed DOI PMC

Woods E.J., Perry B.C., Hockema J.J., Larson L., Zhou D., Goebel W.S. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology. 2009;59:150–157. doi: 10.1016/j.cryobiol.2009.06.005. PubMed DOI PMC

Pegg D.E. Principles of cryopreservation. Methods Mol. Biol. 2015;1257:3–19. doi: 10.1007/978-1-4939-2193-5_1. PubMed DOI

Mazur P. Cryobiology: The freezing of biological systems. Science. 1970;168:939–949. doi: 10.1126/science.168.3934.939. PubMed DOI

Stolzing A., Naaldijk Y., Fedorova V., Sethe S. Hydroxyethylstarch in cryopreservation—Mechanisms, benefits and problems. Transfus. Apher. Sci. 2012;46:137–147. doi: 10.1016/j.transci.2012.01.007. PubMed DOI

Rowe A.W. Biochemical aspects of cryoprotective agents in freezing and thawing. Cryobiology. 1966;3:12–18. doi: 10.1016/S0011-2240(66)80145-1. PubMed DOI

Karow A.M., Jr. Cryoprotectants—A new class of drugs. J. Pharm. Pharmacol. 1969;21:209–223. doi: 10.1111/j.2042-7158.1969.tb08235.x. PubMed DOI

Pilbauerova N., Suchanek J. Cryopreservation of Dental Stem Cells. Acta Med. 2018;61:1–7. doi: 10.14712/18059694.2018.16. PubMed DOI

Elliott G.D., Wang S., Fuller B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017;76:74–91. doi: 10.1016/j.cryobiol.2017.04.004. PubMed DOI

Hunt C.J. Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfus. Med. Hemother. 2011;38:107–123. doi: 10.1159/000326623. PubMed DOI PMC

Rowley S.D., Feng Z., Yadock D., Holmberg L., Macleod B., Heimfeld S. Post-thaw removal of DMSO does not completely abrogate infusional toxicity or the need for pre-infusion histamine blockade. Cytotherapy. 1999;1:439–446. doi: 10.1080/0032472031000141303. PubMed DOI

Li R., Hornberger K., Dutton J.R., Hubel A. Cryopreservation of Human iPS Cell Aggregates in a DMSO-Free Solution-An Optimization and Comparative Study. Front. Bioeng. Biotechnol. 2020;8:1. doi: 10.3389/fbioe.2020.00001. PubMed DOI PMC

Hayakawa J., Joyal E.G., Gildner J.F., Washington K.N., Phang O.A., Uchida N., Hsieh M.M., Tisdale J.F. 5% dimethyl sulfoxide (DMSO) and pentastarch improves cryopreservation of cord blood cells over 10% DMSO. Transfusion. 2010;50:2158–2166. doi: 10.1111/j.1537-2995.2010.02684.x. PubMed DOI PMC

Mitrus I., Smagur A., Giebel S., Gliwinska J., Prokop M., Glowala-Kosinska M., Chwieduk A., Sadus-Wojciechowska M., Tukiendorf A., Holowiecki J. A faster reconstitution of hematopoiesis after autologous transplantation of hematopoietic cells cryopreserved in 7.5% dimethyl sulfoxide if compared to 10% dimethyl sulfoxide containing medium. Cryobiology. 2013;67:327–331. doi: 10.1016/j.cryobiol.2013.09.167. PubMed DOI

Fujisawa R., Mizuno M., Katano H., Otabe K., Ozeki N., Tsuji K., Koga H., Sekiya I. Cryopreservation in 95% serum with 5% DMSO maintains colony formation and chondrogenic abilities in human synovial mesenchymal stem cells. BMC Musculoskelet. Disord. 2019;20:316. doi: 10.1186/s12891-019-2700-3. PubMed DOI PMC

Lee S.Y., Huang G.W., Shiung J.N., Huang Y.H., Jeng J.H., Kuo T.F., Yang J.C., Yang W.C. Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs. 2012;196:23–33. doi: 10.1159/000331247. PubMed DOI

Schmidt J., Pilbauerova N., Soukup T., Suchankova-Kleplova T., Suchanek J. Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro. Biomolecules. 2021;11:22. doi: 10.3390/biom11010022. PubMed DOI PMC

Niloy K.K., Gulfam M., Compton K.B., Li D., Huang G.T.J., Lowe T.L. Methacrylated Hyaluronic Acid–Based Hydrogels Maintain Stemness in Human Dental Pulp Stem Cells. Regen. Eng. Transl. Med. 2020;6:262–272. doi: 10.1007/s40883-019-00115-4. DOI

Jones T.D., Kefi A., Sun S., Cho M., Alapati S.B. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading. Adv. Med. 2016;2016:7363579. doi: 10.1155/2016/7363579. PubMed DOI PMC

Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859. PubMed DOI

Matsumura K., Kawamoto K., Takeuchi M., Yoshimura S., Tanaka D., Hyon S.H. Cryopreservation of a Two-Dimensional Monolayer Using a Slow Vitrification Method with Polyampholyte to Inhibit Ice Crystal Formation. ACS Biomater. Sci. Eng. 2016;2:1023–1029. doi: 10.1021/acsbiomaterials.6b00150. PubMed DOI

Meryman H.T. Cryoprotective agents. Cryobiology. 1971;8:173–183. doi: 10.1016/0011-2240(71)90024-1. PubMed DOI

Berz D., McCormack E.M., Winer E.S., Colvin G.A., Quesenberry P.J. Cryopreservation of hematopoietic stem cells. Am. J. Hematol. 2007;82:463–472. doi: 10.1002/ajh.20707. PubMed DOI PMC

Weng L., Beauchesne P.R. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology. 2020;94:9–17. doi: 10.1016/j.cryobiol.2020.03.012. PubMed DOI

Weng L., Li W., Zuo J., Chen C. Osmolality and Unfrozen Water Content of Aqueous Solution of Dimethyl Sulfoxide. J. Chem. Eng. Data. 2011;56:3175–3182. doi: 10.1021/je2002607. DOI

Wang X., Hua T.C., Sun D.W., Liu B., Yang G., Cao Y. Cryopreservation of tissue-engineered dermal replacement in Me2SO: Toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology. 2007;55:60–65. doi: 10.1016/j.cryobiol.2007.05.006. PubMed DOI

Halle P., Tournilhac O., Knopinska-Posluszny W., Kanold J., Gembara P., Boiret N., Rapatel C., Berger M., Travade P., Angielski S., et al. Uncontrolled-rate freezing and storage at −80 degrees C, with only 3.5-percent DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion. 2001;41:667–673. doi: 10.1046/j.1537-2995.2001.41050667.x. PubMed DOI

Syme R., Bewick M., Stewart D., Porter K., Chadderton T., Glück S. The role of depletion of dimethyl sulfoxide before autografting: On hematologic recovery, side effects, and toxicity. Biol. Blood Marrow Transplant. 2004;10:135–141. doi: 10.1016/j.bbmt.2003.09.016. PubMed DOI

Karlsson J.O., Toner M. Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials. 1996;17:243–256. doi: 10.1016/0142-9612(96)85562-1. PubMed DOI

Sudha P.N., Rose M.H. Beneficial effects of hyaluronic acid. Adv. Food Nutr. Res. 2014;72:137–176. doi: 10.1016/b978-0-12-800269-8.00009-9. PubMed DOI

Yu C.J., Ko C.J., Hsieh C.H., Chien C.T., Huang L.H., Lee C.W., Jiang C.C. Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J. Proteom. 2014;99:40–53. doi: 10.1016/j.jprot.2014.01.016. PubMed DOI

Průšová A., Šmejkalová D., Chytil M., Velebný V., Kučerík J. An alternative DSC approach to study hydration of hyaluronan. Carbohydr. Polym. 2010;82:498–503. doi: 10.1016/j.carbpol.2010.05.022. PubMed DOI

Sbracia M., Grasso J., Sayme N., Stronk J., Huszar G. Hyaluronic acid substantially increases the retention of motility in cryopreserved/thawed human spermatozoa. Hum. Reprod. 1997;12:1949–1954. doi: 10.1093/humrep/12.9.1949. PubMed DOI

Majumdar M.K., Keane-Moore M., Buyaner D., Hardy W.B., Moorman M.A., McIntosh K.R., Mosca J.D. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 2003;10:228–241. doi: 10.1007/BF02256058. PubMed DOI

Krebsbach P.H., Villa-Diaz L.G. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker. Stem Cells Dev. 2017;26:1090–1099. doi: 10.1089/scd.2016.0319. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Editorial of Special Issue "Hyaluronic Acid in Human Medicine"

. 2022 Oct 17 ; 12 (10) : . [epub] 20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...