Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro

. 2020 Dec 28 ; 11 (1) : . [epub] 20201228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33379324

Grantová podpora
Progres Q40/06 Univerzita Karlova v Praze - International
Progres Q40/13 Univerzita Karlova v Praze - International

Hyaluronic acid (HA) and dental pulp stem cells (DPSCs) are attractive research topics, and their combined use in the field of tissue engineering seems to be very promising. HA is a natural extracellular biopolymer found in various tissues, including dental pulp, and due to its biocompatibility and biodegradability, it is also a suitable scaffold material. However, low molecular weight (LMW) fragments, produced by enzymatic cleavage of HA, have different bioactive properties to high molecular weight (HMW) HA. Thus, the impact of HA must be assessed separately for each molecular weight fraction. In this study, we present the effect of three LMW-HA fragments (800, 1600, and 15,000 Da) on DPSCs in vitro. Discrete biological parameters such as DPSC viability, morphology, and cell surface marker expression were determined. Following treatment with LMW-HA, DPSCs initially presented with an acute reduction in proliferation (p < 0.0016) and soon recovered in subsequent passages. They displayed significant size reduction (p = 0.0078, p = 0.0019, p = 0.0098) while maintaining high expression of DPSC markers (CD29, CD44, CD73, CD90). However, in contrast to controls, a significant phenotypic shift (p < 0.05; CD29, CD34, CD90, CD106, CD117, CD146, CD166) of surface markers was observed. These findings provide a basis for further detailed investigations and present a strong argument for the importance of HA scaffold degradation kinetics analysis.

Zobrazit více v PubMed

Battistini F.D., Tártara L.I., Boiero C., Guzman M.L., Luciani-Giaccobbe L., Palma S.D., Allemandi D.A., Manzo R.H., Olivera M.E. The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case. Eur. J. Pharm. Sci. 2017;105:188–194. doi: 10.1016/j.ejps.2017.05.020. PubMed DOI

Necas J., Bartosikova L., Brauner P., Kolar J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008;53:397–411. doi: 10.17221/1930-VETMED. DOI

Zhai P., Peng X., Li B., Liu Y., Sun H., Li X. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020;151:1224–1239. doi: 10.1016/j.ijbiomac.2019.10.169. PubMed DOI

Litwiniuk M., Krejner A., Speyrer M.S., Gauto A.R., Grzela T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds. 2016;28:78–88. PubMed

Fakhari A., Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9:7081–7092. doi: 10.1016/j.actbio.2013.03.005. PubMed DOI PMC

Kobayashi T., Chanmee T., Itano N. Hyaluronan: Metabolism and Function. Biomolecules. 2020;10:1525. doi: 10.3390/biom10111525. PubMed DOI PMC

Cowman M.K., Lee H.G., Schwertfeger K.L., McCarthy J.B., Turley E.A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015;6:261. doi: 10.3389/fimmu.2015.00261. PubMed DOI PMC

Vasvani S., Kulkarni P., Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020;151:1012–1029. doi: 10.1016/j.ijbiomac.2019.11.066. PubMed DOI

Albano G.D., Bonanno A., Cavalieri L., Ingrassia E., Di Sano C., Siena L., Riccobono L., Gagliardo R., Profita M. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells. Mediators Inflamm. 2016;2016:8727289. doi: 10.1155/2016/8727289. PubMed DOI PMC

Kogan G., Šoltés L., Stern R., Schiller J., Mendichi R. Hyaluronic Acid: Its Function and Degradation in in vivo Systems. Stud. Nat. Prod. Chem. 2008;34:789–882. doi: 10.1016/S1572-5995(08)80035-X. DOI

Frenkel J.S. The role of hyaluronan in wound healing. Int. Wound J. 2014;11:159–163. doi: 10.1111/j.1742-481X.2012.01057.x. PubMed DOI PMC

Stern R., Asari A.A., Sugahara K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell. Biol. 2006;85:699–715. doi: 10.1016/j.ejcb.2006.05.009. PubMed DOI

Jiang D., Liang J., Noble P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 2011;91:221–264. doi: 10.1152/physrev.00052.2009. PubMed DOI PMC

Nyman E., Henricson J., Ghafouri B., Anderson C.D., Kratz G. Hyaluronic Acid Accelerates Re-epithelialization and Alters Protein Expression in a Human Wound Model. Plast. Reconstr. Surg. Glob. Open. 2019;7:e2221. doi: 10.1097/GOX.0000000000002221. PubMed DOI PMC

Park D., Kim Y., Kim H., Kim K., Lee Y.-S., Choe J., Hahn J.-H., Lee H., Jeon J., Choi C. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol. Cells. 2012;33:563–574. doi: 10.1007/s10059-012-2294-1. PubMed DOI PMC

Wu M., Cao M., He Y., Liu Y., Yang C., Du Y., Wang W., Gao F. A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J. 2015;29:1290–1298. doi: 10.1096/fj.14-259978. PubMed DOI

Kultti A., Li X., Jiang P., Thompson C.B., Frost G.I., Shepard H.M. Therapeutic targeting of hyaluronan in the tumor stroma. Cancers. 2012;4:873–903. doi: 10.3390/cancers4030873. PubMed DOI PMC

McCarthy J.B., El-Ashry D., Turley E.A. Hyaluronan, cancer-associated fibroblasts and the tumor microenvironment in malignant progression. Front. Cell Dev. Biol. 2018;6:48. doi: 10.3389/fcell.2018.00048. PubMed DOI PMC

Evanko S.P., Potter-Perigo S., Petty L.J., Workman G.A., Wight T.N. Hyaluronan controls the deposition of fibronectin and collagen and modulates TGF-β1 induction of lung myofibroblasts. Matrix Biol. 2015;42:74–92. doi: 10.1016/j.matbio.2014.12.001. PubMed DOI PMC

Cyphert J.M., Trempus C.S., Garantziotis S. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int. J. Cell Biol. 2015;2015:563818. doi: 10.1155/2015/563818. PubMed DOI PMC

Tavianatou A.G., Caon I., Franchi M., Piperigkou Z., Galesso D., Karamanos N.K. Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286:2883–2908. doi: 10.1111/febs.14777. PubMed DOI

Maharjan A.S., Pilling D., Gomer R.H. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS ONE. 2011;6:e26078. doi: 10.1371/journal.pone.0026078. PubMed DOI PMC

Rayahin J.E., Buhrman J.S., Zhang Y., Koh T.J., Gemeinhart R.A. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater. Sci. Eng. 2015;1:481–493. doi: 10.1021/acsbiomaterials.5b00181. PubMed DOI PMC

Zhu Z., Wang Y.-M., Yang J., Luo X.-S. Hyaluronic acid: A versatile biomaterial in tissue engineering. J. Plast. Aesthet. Res. 2017;4:219. doi: 10.20517/2347-9264.2017.71. DOI

Collins M.N., Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013;92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028. PubMed DOI

Luttrell T., Rosenberry S., Estacado N., Coates J. Novel Use of a Biologically Active-Prefabricated-Random-Three-Dimensional-Polymer Scaffold of Hyaluronic Acid (HYAFF) to Facilitate Complicated Wound Closure. In: Shiffman M.A., Low M., editors. Burns, Infections and Wound Management. Springer International Publishing; Cham, Switzerland: 2018. pp. 213–247.

Choi K.Y., Han H.S., Lee E.S., Shin J.M., Almquist B.D., Lee D.S., Park J.H. Hyaluronic acid–Based activatable nanomaterials for stimuli-responsive imaging and therapeutics: Beyond CD44-mediated drug delivery. J. Adv. Mater. 2019;31:1803549. doi: 10.1002/adma.201803549. PubMed DOI

Kim J.H., Moon M.J., Kim D.Y., Heo S.H., Jeong Y.Y. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers. 2018;10:1133. doi: 10.3390/polym10101133. PubMed DOI PMC

Murashita T., Nakayama Y., Hirano T., Ohashi S. Acceleration of granulation tissue ingrowth by hyaluronic acid in artificial skin. Br. J. Plast. Surg. 1996;49:58–63. doi: 10.1016/S0007-1226(96)90188-5. PubMed DOI

Li H., Qi Z., Zheng S., Chang Y., Kong W., Fu C., Yu Z., Yang X., Pan S. The application of hyaluronic acid-based hydrogels in bone and cartilage tissue engineering. Adv. Eng. Mater. 2020;151:1224–1239. doi: 10.1155/2019/3027303. DOI

Ahearne M., Fernández-Pérez J., Masterton S., Madden P.W., Bhattacharjee P. Designing Scaffolds for Corneal Regeneration. Adv. Funct. Mater. 2020;30:1908996. doi: 10.1002/adfm.201908996. DOI

Takeda K., Sakai N., Shiba H., Nagahara T., Fujita T., Kajiya M., Iwata T., Matsuda S., Kawahara K., Kawaguchi H. Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng. Part A. 2011;17:955–967. doi: 10.1089/ten.tea.2010.0070. PubMed DOI

Haugen H.J., Basu P., Sukul M., Mano J.F., Reseland J.E. Injectable Biomaterials for Dental Tissue Regeneration. Int. J. Mol. Sci. 2020;21:3442. doi: 10.3390/ijms21103442. PubMed DOI PMC

Ahmadian E., Eftekhari A., Dizaj S.M., Sharifi S., Mokhtarpour M., Nasibova A.N., Khalilov R., Samiei M. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. Int. J. Biol. Macromol. 2019;140:245–254. doi: 10.1016/j.ijbiomac.2019.08.119. PubMed DOI

Hozumi T., Kageyama T., Ohta S., Fukuda J., Ito T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff’s base formation. Biomacromolecules. 2018;19:288–297. doi: 10.1021/acs.biomac.7b01133. PubMed DOI

Heljak M.K., Swieszkowski W., Kurzydlowski K.J. Modeling of the degradation kinetics of biodegradable scaffolds: The effects of the environmental conditions. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40280. DOI

Zhang H., Zhou L., Zhang W. Control of scaffold degradation in tissue engineering: A review. Tissue Eng. Part. B Rev. 2014;20:492–502. doi: 10.1089/ten.teb.2013.0452. PubMed DOI

Hortensius R.A., Harley B.A.C. 2.16 Collagen-GAG Materials. In: Ducheyne P., editor. Comprehensive Biomaterials II. Volume 2. Elsevier; Oxford, UK: 2017. pp. 351–380.

Martins J.P., Ferreira M.P.A., Ezazi N.Z., Hirvonen J.T., Santos H.A., Thrivikraman G., França C.M., Athirasala A., Tahayeri A., Bertassoni L.E. 3D printing: Prospects and challenges. In: Uskoković V., Uskoković D.P., editors. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier Science; Amsterdam, The Netherlands: 2018. pp. 299–379.

Victor A.K., Reiter L.T. Dental pulp stem cells for the study of neurogenetic disorders. Hum. Mol. Genet. 2017;26:R166–R171. doi: 10.1093/hmg/ddx208. PubMed DOI PMC

Anitua E., Troya M., Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018;20:479–498. doi: 10.1016/j.jcyt.2017.12.011. PubMed DOI

Suchánek J., Browne K.Z., Kleplová T.S., Mazurová Y. Dental Stem Cells: Regenerative Potential. Humana Press; Totowa, NJ, USA: 2016. Protocols for Dental-Related Stem Cells Isolation, Amplification and Differentiation; pp. 27–56.

Tsutsui T.W. Dental Pulp Stem Cells: Advances to Applications. Stem Cells Cloning Adv. Appl. 2020;13:33–42. doi: 10.2147/SCCAA.S166759. PubMed DOI PMC

Luzuriaga J., Pastor-Alonso O., Encinas J.M., Unda F., Ibarretxe G., Pineda J.R. Human dental pulp stem cells grown in neurogenic media differentiate into endothelial cells and promote neovasculogenesis in the mouse brain. Front. Physiol. 2019;10:347. doi: 10.3389/fphys.2019.00347. PubMed DOI PMC

Goorha S., Reiter L.T. Culturing and Neuronal Differentiation of Human Dental Pulp Stem Cells. Curr. Protoc. Hum. Genet. 2017;92:21.6.1–21.6.10. doi: 10.1002/cphg.28. PubMed DOI PMC

Wolf T.G., Paque F., Sven Patyna M., Willershausen B., Briseno-Marroquin B. Three-dimensional analysis of the physiological foramen geometry of maxillary and mandibular molars by means of micro-CT. Int. J. Oral Sci. 2017;9:151–157. doi: 10.1038/ijos.2017.29. PubMed DOI PMC

Goldberg M., Hirata A. The dental pulp: Composition, properties and functions. JSM Dent. 2017;5:1079.

Niloy K.K., Gulfam M., Compton K.B., Li D., Huang G.T.-J., Lowe T.L. Methacrylated Hyaluronic Acid–Based Hydrogels Maintain Stemness in Human Dental Pulp Stem Cells. Regen. Eng. Transl. Med. 2019:1–11. doi: 10.1007/s40883-019-00115-4. PubMed DOI

Compton K.B. Master’s Thesis. University of Tennessee; Memphis, TN, USA: Dec, 2014. Synthesis and Characterization of Methacrylated Hyaluronan-Based Hydrogels for Tissue Engineering.

Jones T.D., Kefi A., Sun S., Cho M., Alapati S.B. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading. Adv. Med. 2016;2016:7363579. doi: 10.1155/2016/7363579. PubMed DOI PMC

Almeida L., Babo P., Hebling J., Gomes M., Reis R. Injectable photocrosslinkable hyaluronic acid hydrogels incorporated with platelet lysate enhance the dentinogenic differentiation of human dental pulp stem cells; Proceedings of the 10th World Biomaterials Congress; Montréal, QC, Canada. 17 May–22 May 2016.

Umemura N., Ohkoshi E., Tajima M., Kikuchi H., Katayama T., Sakagami H. Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via CD44. Stem Cell Res. Ther. 2016;7:135. doi: 10.1186/s13287-016-0399-8. PubMed DOI PMC

Jensen J., Kraft D.C., Lysdahl H., Foldager C.B., Chen M., Kristiansen A.A., Rolfing J.H., Bunger C.E. Functionalization of polycaprolactone scaffolds with hyaluronic acid and beta-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng. Part A. 2015;21:729–739. doi: 10.1089/ten.tea.2014.0177. PubMed DOI PMC

Apel C., Buttler P., Salber J., Dhanasingh A., Neuss S. Differential mineralization of human dental pulp stem cells on diverse polymers. Biomed. Tech. 2018;63:261–269. doi: 10.1515/bmt-2016-0141. PubMed DOI

Ferroni L., Gardin C., Sivolella S., Brunello G., Berengo M., Piattelli A., Bressan E., Zavan B. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. Int. J. Mol. Sci. 2015;16:4666–4681. doi: 10.3390/ijms16034666. PubMed DOI PMC

Chrepa V., Austah O., Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (Restylane) as injectable scaffold for dental pulp regeneration: An in vitro evaluation. J. Endod. 2017;43:257–262. doi: 10.1016/j.joen.2016.10.026. PubMed DOI

Šafránková B., Hermannová M., Nešporová K., Velebný V., Kubala L. Absence of differences among low, middle, and high molecular weight hyaluronan in activating murine immune cells in vitro. Int. J. Biol. Macromol. 2018;107:1–8. doi: 10.1016/j.ijbiomac.2017.08.131. PubMed DOI

Yang Y.K., Ogando C.R., Wang See C., Chang T.Y., Barabino G.A. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res. Ther. 2018;9:131. doi: 10.1186/s13287-018-0876-3. PubMed DOI PMC

Alessio N., Stellavato A., Squillaro T., Del Gaudio S., Di Bernardo G., Peluso G., De Rosa M., Schiraldi C., Galderisi U. Hybrid complexes of high and low molecular weight hyaluronan delay in vitro replicative senescence of mesenchymal stromal cells: A pilot study for future therapeutic application. Aging. 2018;10:1575–1585. doi: 10.18632/aging.101493. PubMed DOI PMC

Duff S.E., Li C., Garland J.M., Kumar S. CD105 is important for angiogenesis: Evidence and potential applications. FASEB J. 2003;17:984–992. doi: 10.1096/fj.02-0634rev. PubMed DOI

Brinkhof B., Zhang B., Cui Z., Ye H., Wang H. ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene X. 2020;5:100031. doi: 10.1016/j.gene.2020.100031. PubMed DOI PMC

Yang Z.X., Han Z.B., Ji Y.R., Wang Y.W., Liang L., Chi Y., Yang S.G., Li L.N., Luo W.F., Li J.P., et al. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS ONE. 2013;8:e59354. doi: 10.1371/journal.pone.0059354. PubMed DOI PMC

Nieto-Nicolau N., Raquel M., Fariñas O., Savio A., Vilarrodona A., Casaroli-Marano R.P. Extrinsic modulation of integrin α6 and progenitor cell behavior in mesenchymal stem cells. Stem Cell Res. 2020;47:101899. doi: 10.1016/j.scr.2020.101899. PubMed DOI

Foster B.M., Zaidi D., Young T.R., Mobley M.E., Kerr B.A. CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance. Biomedicines. 2018;6:31. doi: 10.3390/biomedicines6010031. PubMed DOI PMC

Edling C.E., Hallberg B. c-Kit—a hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol. 2007;39:1995–1998. doi: 10.1016/j.biocel.2006.12.005. PubMed DOI

Crende O., García-Gallastegui P., Luzuriaga J., Badiola I., de la Hoz C., Unda F., Ibarretxe G., Pineda J. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. Biology. 2020;9:426. doi: 10.3390/biology9120426. PubMed DOI PMC

Espagnolle N., Guilloton F., Deschaseaux F., Gadelorge M., Sensébé L., Bourin P. CD 146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J. Cell. Mol. Med. 2014;18:104–114. doi: 10.1111/jcmm.12168. PubMed DOI PMC

Matsui M., Kobayashi T., Tsutsui T.W. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. Hum. Cell. 2018;31:127–138. doi: 10.1007/s13577-017-0198-2. PubMed DOI PMC

Wei X., Ling J., Wu L., Liu L., Xiao Y. Expression of mineralization markers in dental pulp cells. J. Endod. 2007;33:703–708. doi: 10.1016/j.joen.2007.02.009. PubMed DOI

Khanna-Jain R., Vanhatupa S., Vuorinen A., Sandor G., Suuronen R., Mannerstrom B., Miettinen S. Growth and differentiation of human dental pulp stem cells maintained in fetal bovine serum, human serum and serum-free/xeno-free culture media. Stem Cell Res. Ther. 2012;2 doi: 10.4172/2157-7633.1000126. DOI

Karbanová J., Soukup T., Suchánek J., Pytlík R., Corbeil D., Mokrý J. Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium. Cells Tissues Organs. 2011;193:344–365. doi: 10.1159/000321160. PubMed DOI

Nam H., Kim G.-H., Bae Y.-K., Jeong D.-E., Joo K.-M., Lee K., Lee S.-H. Angiogenic capacity of dental pulp stem cell regulated by SDF-1α-CXCR4 axis. Stem Cells Int. 2017;2017 doi: 10.1155/2017/8085462. PubMed DOI PMC

Young F.I., Telezhkin V., Youde S.J., Langley M.S., Stack M., Kemp P.J., Waddington R.J., Sloan A.J., Song B. Clonal Heterogeneity in the Neuronal and Glial Differentiation of Dental Pulp Stem/Progenitor Cells. Stem Cells Int. 2016;2016:1290561. doi: 10.1155/2016/1290561. PubMed DOI PMC

Alraies A., Canetta E., Waddington R.J., Moseley R., Sloan A.J. Discrimination of Dental Pulp Stem Cell Regenerative Heterogeneity by Single-Cell Raman Spectroscopy. Tissue Eng. Part C Methods. 2019;25:489–499. doi: 10.1089/ten.tec.2019.0129. PubMed DOI

Yang C., Chen Y., Zhong L., You M., Yan Z., Luo M., Zhang B., Yang B., Chen Q. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth. Int. J. Biochem. Cell Biol. 2020;98:415–425. doi: 10.1139/bcb-2019-0253. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Alraies A., Alaidaroos N.Y., Waddington R.J., Moseley R., Sloan A.J. Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol. 2017;18:12. doi: 10.1186/s12860-017-0128-x. PubMed DOI PMC

Álvarez-Viejo M., Menéndez-Menéndez Y., Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World. J. Stem Cells. 2015;7:470–476. doi: 10.4252/wjsc.v7.i2.470. PubMed DOI PMC

Alvarez R., Lee H.L., Hong C., Wang C.Y. Single CD271 marker isolates mesenchymal stem cells from human dental pulp. Int. J. Oral Sci. 2015;7:205–212. doi: 10.1038/ijos.2015.29. PubMed DOI PMC

Mafi P., Hindocha S., Mafi R., Griffin M., Khan W. Adult mesenchymal stem cells and cell surface characterization—a systematic review of the literature. Open J. Orthop. 2011;5:253–260. doi: 10.2174/1874325001105010253. PubMed DOI PMC

Macrin D., Alghadeer A., Zhao Y.T., Miklas J.W., Hussein A.M., Detraux D., Robitaille A.M., Madan A., Moon R.T., Wang Y.J.S.R. Metabolism as an early predictor of DPSCs Aging. Sci. Rep. 2019;9:1–19. doi: 10.1038/s41598-018-37489-4. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Innovative Approach in the Cryogenic Freezing Medium for Mesenchymal Stem Cells

. 2022 Apr 20 ; 12 (5) : . [epub] 20220420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...