Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Progres Q40/06
Univerzita Karlova v Praze - International
Progres Q40/13
Univerzita Karlova v Praze - International
PubMed
33379324
PubMed Central
PMC7823925
DOI
10.3390/biom11010022
PII: biom11010022
Knihovny.cz E-zdroje
- Klíčová slova
- dental pulp stem cells, hyaluronic acid, low molecular weight hyaluronic acid, scaffold, tissue engineering,
- MeSH
- buněčná diferenciace účinky léků MeSH
- kmenové buňky cytologie účinky léků MeSH
- kultivované buňky MeSH
- kyselina hyaluronová farmakologie MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- proliferace buněk účinky léků MeSH
- tkáňové inženýrství MeSH
- zubní dřeň účinky léků růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina hyaluronová MeSH
Hyaluronic acid (HA) and dental pulp stem cells (DPSCs) are attractive research topics, and their combined use in the field of tissue engineering seems to be very promising. HA is a natural extracellular biopolymer found in various tissues, including dental pulp, and due to its biocompatibility and biodegradability, it is also a suitable scaffold material. However, low molecular weight (LMW) fragments, produced by enzymatic cleavage of HA, have different bioactive properties to high molecular weight (HMW) HA. Thus, the impact of HA must be assessed separately for each molecular weight fraction. In this study, we present the effect of three LMW-HA fragments (800, 1600, and 15,000 Da) on DPSCs in vitro. Discrete biological parameters such as DPSC viability, morphology, and cell surface marker expression were determined. Following treatment with LMW-HA, DPSCs initially presented with an acute reduction in proliferation (p < 0.0016) and soon recovered in subsequent passages. They displayed significant size reduction (p = 0.0078, p = 0.0019, p = 0.0098) while maintaining high expression of DPSC markers (CD29, CD44, CD73, CD90). However, in contrast to controls, a significant phenotypic shift (p < 0.05; CD29, CD34, CD90, CD106, CD117, CD146, CD166) of surface markers was observed. These findings provide a basis for further detailed investigations and present a strong argument for the importance of HA scaffold degradation kinetics analysis.
Zobrazit více v PubMed
Battistini F.D., Tártara L.I., Boiero C., Guzman M.L., Luciani-Giaccobbe L., Palma S.D., Allemandi D.A., Manzo R.H., Olivera M.E. The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case. Eur. J. Pharm. Sci. 2017;105:188–194. doi: 10.1016/j.ejps.2017.05.020. PubMed DOI
Necas J., Bartosikova L., Brauner P., Kolar J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008;53:397–411. doi: 10.17221/1930-VETMED. DOI
Zhai P., Peng X., Li B., Liu Y., Sun H., Li X. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020;151:1224–1239. doi: 10.1016/j.ijbiomac.2019.10.169. PubMed DOI
Litwiniuk M., Krejner A., Speyrer M.S., Gauto A.R., Grzela T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds. 2016;28:78–88. PubMed
Fakhari A., Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9:7081–7092. doi: 10.1016/j.actbio.2013.03.005. PubMed DOI PMC
Kobayashi T., Chanmee T., Itano N. Hyaluronan: Metabolism and Function. Biomolecules. 2020;10:1525. doi: 10.3390/biom10111525. PubMed DOI PMC
Cowman M.K., Lee H.G., Schwertfeger K.L., McCarthy J.B., Turley E.A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015;6:261. doi: 10.3389/fimmu.2015.00261. PubMed DOI PMC
Vasvani S., Kulkarni P., Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020;151:1012–1029. doi: 10.1016/j.ijbiomac.2019.11.066. PubMed DOI
Albano G.D., Bonanno A., Cavalieri L., Ingrassia E., Di Sano C., Siena L., Riccobono L., Gagliardo R., Profita M. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells. Mediators Inflamm. 2016;2016:8727289. doi: 10.1155/2016/8727289. PubMed DOI PMC
Kogan G., Šoltés L., Stern R., Schiller J., Mendichi R. Hyaluronic Acid: Its Function and Degradation in in vivo Systems. Stud. Nat. Prod. Chem. 2008;34:789–882. doi: 10.1016/S1572-5995(08)80035-X. DOI
Frenkel J.S. The role of hyaluronan in wound healing. Int. Wound J. 2014;11:159–163. doi: 10.1111/j.1742-481X.2012.01057.x. PubMed DOI PMC
Stern R., Asari A.A., Sugahara K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell. Biol. 2006;85:699–715. doi: 10.1016/j.ejcb.2006.05.009. PubMed DOI
Jiang D., Liang J., Noble P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 2011;91:221–264. doi: 10.1152/physrev.00052.2009. PubMed DOI PMC
Nyman E., Henricson J., Ghafouri B., Anderson C.D., Kratz G. Hyaluronic Acid Accelerates Re-epithelialization and Alters Protein Expression in a Human Wound Model. Plast. Reconstr. Surg. Glob. Open. 2019;7:e2221. doi: 10.1097/GOX.0000000000002221. PubMed DOI PMC
Park D., Kim Y., Kim H., Kim K., Lee Y.-S., Choe J., Hahn J.-H., Lee H., Jeon J., Choi C. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol. Cells. 2012;33:563–574. doi: 10.1007/s10059-012-2294-1. PubMed DOI PMC
Wu M., Cao M., He Y., Liu Y., Yang C., Du Y., Wang W., Gao F. A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J. 2015;29:1290–1298. doi: 10.1096/fj.14-259978. PubMed DOI
Kultti A., Li X., Jiang P., Thompson C.B., Frost G.I., Shepard H.M. Therapeutic targeting of hyaluronan in the tumor stroma. Cancers. 2012;4:873–903. doi: 10.3390/cancers4030873. PubMed DOI PMC
McCarthy J.B., El-Ashry D., Turley E.A. Hyaluronan, cancer-associated fibroblasts and the tumor microenvironment in malignant progression. Front. Cell Dev. Biol. 2018;6:48. doi: 10.3389/fcell.2018.00048. PubMed DOI PMC
Evanko S.P., Potter-Perigo S., Petty L.J., Workman G.A., Wight T.N. Hyaluronan controls the deposition of fibronectin and collagen and modulates TGF-β1 induction of lung myofibroblasts. Matrix Biol. 2015;42:74–92. doi: 10.1016/j.matbio.2014.12.001. PubMed DOI PMC
Cyphert J.M., Trempus C.S., Garantziotis S. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int. J. Cell Biol. 2015;2015:563818. doi: 10.1155/2015/563818. PubMed DOI PMC
Tavianatou A.G., Caon I., Franchi M., Piperigkou Z., Galesso D., Karamanos N.K. Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286:2883–2908. doi: 10.1111/febs.14777. PubMed DOI
Maharjan A.S., Pilling D., Gomer R.H. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS ONE. 2011;6:e26078. doi: 10.1371/journal.pone.0026078. PubMed DOI PMC
Rayahin J.E., Buhrman J.S., Zhang Y., Koh T.J., Gemeinhart R.A. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater. Sci. Eng. 2015;1:481–493. doi: 10.1021/acsbiomaterials.5b00181. PubMed DOI PMC
Zhu Z., Wang Y.-M., Yang J., Luo X.-S. Hyaluronic acid: A versatile biomaterial in tissue engineering. J. Plast. Aesthet. Res. 2017;4:219. doi: 10.20517/2347-9264.2017.71. DOI
Collins M.N., Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013;92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028. PubMed DOI
Luttrell T., Rosenberry S., Estacado N., Coates J. Novel Use of a Biologically Active-Prefabricated-Random-Three-Dimensional-Polymer Scaffold of Hyaluronic Acid (HYAFF) to Facilitate Complicated Wound Closure. In: Shiffman M.A., Low M., editors. Burns, Infections and Wound Management. Springer International Publishing; Cham, Switzerland: 2018. pp. 213–247.
Choi K.Y., Han H.S., Lee E.S., Shin J.M., Almquist B.D., Lee D.S., Park J.H. Hyaluronic acid–Based activatable nanomaterials for stimuli-responsive imaging and therapeutics: Beyond CD44-mediated drug delivery. J. Adv. Mater. 2019;31:1803549. doi: 10.1002/adma.201803549. PubMed DOI
Kim J.H., Moon M.J., Kim D.Y., Heo S.H., Jeong Y.Y. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers. 2018;10:1133. doi: 10.3390/polym10101133. PubMed DOI PMC
Murashita T., Nakayama Y., Hirano T., Ohashi S. Acceleration of granulation tissue ingrowth by hyaluronic acid in artificial skin. Br. J. Plast. Surg. 1996;49:58–63. doi: 10.1016/S0007-1226(96)90188-5. PubMed DOI
Li H., Qi Z., Zheng S., Chang Y., Kong W., Fu C., Yu Z., Yang X., Pan S. The application of hyaluronic acid-based hydrogels in bone and cartilage tissue engineering. Adv. Eng. Mater. 2020;151:1224–1239. doi: 10.1155/2019/3027303. DOI
Ahearne M., Fernández-Pérez J., Masterton S., Madden P.W., Bhattacharjee P. Designing Scaffolds for Corneal Regeneration. Adv. Funct. Mater. 2020;30:1908996. doi: 10.1002/adfm.201908996. DOI
Takeda K., Sakai N., Shiba H., Nagahara T., Fujita T., Kajiya M., Iwata T., Matsuda S., Kawahara K., Kawaguchi H. Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng. Part A. 2011;17:955–967. doi: 10.1089/ten.tea.2010.0070. PubMed DOI
Haugen H.J., Basu P., Sukul M., Mano J.F., Reseland J.E. Injectable Biomaterials for Dental Tissue Regeneration. Int. J. Mol. Sci. 2020;21:3442. doi: 10.3390/ijms21103442. PubMed DOI PMC
Ahmadian E., Eftekhari A., Dizaj S.M., Sharifi S., Mokhtarpour M., Nasibova A.N., Khalilov R., Samiei M. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. Int. J. Biol. Macromol. 2019;140:245–254. doi: 10.1016/j.ijbiomac.2019.08.119. PubMed DOI
Hozumi T., Kageyama T., Ohta S., Fukuda J., Ito T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff’s base formation. Biomacromolecules. 2018;19:288–297. doi: 10.1021/acs.biomac.7b01133. PubMed DOI
Heljak M.K., Swieszkowski W., Kurzydlowski K.J. Modeling of the degradation kinetics of biodegradable scaffolds: The effects of the environmental conditions. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40280. DOI
Zhang H., Zhou L., Zhang W. Control of scaffold degradation in tissue engineering: A review. Tissue Eng. Part. B Rev. 2014;20:492–502. doi: 10.1089/ten.teb.2013.0452. PubMed DOI
Hortensius R.A., Harley B.A.C. 2.16 Collagen-GAG Materials. In: Ducheyne P., editor. Comprehensive Biomaterials II. Volume 2. Elsevier; Oxford, UK: 2017. pp. 351–380.
Martins J.P., Ferreira M.P.A., Ezazi N.Z., Hirvonen J.T., Santos H.A., Thrivikraman G., França C.M., Athirasala A., Tahayeri A., Bertassoni L.E. 3D printing: Prospects and challenges. In: Uskoković V., Uskoković D.P., editors. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier Science; Amsterdam, The Netherlands: 2018. pp. 299–379.
Victor A.K., Reiter L.T. Dental pulp stem cells for the study of neurogenetic disorders. Hum. Mol. Genet. 2017;26:R166–R171. doi: 10.1093/hmg/ddx208. PubMed DOI PMC
Anitua E., Troya M., Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018;20:479–498. doi: 10.1016/j.jcyt.2017.12.011. PubMed DOI
Suchánek J., Browne K.Z., Kleplová T.S., Mazurová Y. Dental Stem Cells: Regenerative Potential. Humana Press; Totowa, NJ, USA: 2016. Protocols for Dental-Related Stem Cells Isolation, Amplification and Differentiation; pp. 27–56.
Tsutsui T.W. Dental Pulp Stem Cells: Advances to Applications. Stem Cells Cloning Adv. Appl. 2020;13:33–42. doi: 10.2147/SCCAA.S166759. PubMed DOI PMC
Luzuriaga J., Pastor-Alonso O., Encinas J.M., Unda F., Ibarretxe G., Pineda J.R. Human dental pulp stem cells grown in neurogenic media differentiate into endothelial cells and promote neovasculogenesis in the mouse brain. Front. Physiol. 2019;10:347. doi: 10.3389/fphys.2019.00347. PubMed DOI PMC
Goorha S., Reiter L.T. Culturing and Neuronal Differentiation of Human Dental Pulp Stem Cells. Curr. Protoc. Hum. Genet. 2017;92:21.6.1–21.6.10. doi: 10.1002/cphg.28. PubMed DOI PMC
Wolf T.G., Paque F., Sven Patyna M., Willershausen B., Briseno-Marroquin B. Three-dimensional analysis of the physiological foramen geometry of maxillary and mandibular molars by means of micro-CT. Int. J. Oral Sci. 2017;9:151–157. doi: 10.1038/ijos.2017.29. PubMed DOI PMC
Goldberg M., Hirata A. The dental pulp: Composition, properties and functions. JSM Dent. 2017;5:1079.
Niloy K.K., Gulfam M., Compton K.B., Li D., Huang G.T.-J., Lowe T.L. Methacrylated Hyaluronic Acid–Based Hydrogels Maintain Stemness in Human Dental Pulp Stem Cells. Regen. Eng. Transl. Med. 2019:1–11. doi: 10.1007/s40883-019-00115-4. PubMed DOI
Compton K.B. Master’s Thesis. University of Tennessee; Memphis, TN, USA: Dec, 2014. Synthesis and Characterization of Methacrylated Hyaluronan-Based Hydrogels for Tissue Engineering.
Jones T.D., Kefi A., Sun S., Cho M., Alapati S.B. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading. Adv. Med. 2016;2016:7363579. doi: 10.1155/2016/7363579. PubMed DOI PMC
Almeida L., Babo P., Hebling J., Gomes M., Reis R. Injectable photocrosslinkable hyaluronic acid hydrogels incorporated with platelet lysate enhance the dentinogenic differentiation of human dental pulp stem cells; Proceedings of the 10th World Biomaterials Congress; Montréal, QC, Canada. 17 May–22 May 2016.
Umemura N., Ohkoshi E., Tajima M., Kikuchi H., Katayama T., Sakagami H. Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via CD44. Stem Cell Res. Ther. 2016;7:135. doi: 10.1186/s13287-016-0399-8. PubMed DOI PMC
Jensen J., Kraft D.C., Lysdahl H., Foldager C.B., Chen M., Kristiansen A.A., Rolfing J.H., Bunger C.E. Functionalization of polycaprolactone scaffolds with hyaluronic acid and beta-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng. Part A. 2015;21:729–739. doi: 10.1089/ten.tea.2014.0177. PubMed DOI PMC
Apel C., Buttler P., Salber J., Dhanasingh A., Neuss S. Differential mineralization of human dental pulp stem cells on diverse polymers. Biomed. Tech. 2018;63:261–269. doi: 10.1515/bmt-2016-0141. PubMed DOI
Ferroni L., Gardin C., Sivolella S., Brunello G., Berengo M., Piattelli A., Bressan E., Zavan B. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. Int. J. Mol. Sci. 2015;16:4666–4681. doi: 10.3390/ijms16034666. PubMed DOI PMC
Chrepa V., Austah O., Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (Restylane) as injectable scaffold for dental pulp regeneration: An in vitro evaluation. J. Endod. 2017;43:257–262. doi: 10.1016/j.joen.2016.10.026. PubMed DOI
Šafránková B., Hermannová M., Nešporová K., Velebný V., Kubala L. Absence of differences among low, middle, and high molecular weight hyaluronan in activating murine immune cells in vitro. Int. J. Biol. Macromol. 2018;107:1–8. doi: 10.1016/j.ijbiomac.2017.08.131. PubMed DOI
Yang Y.K., Ogando C.R., Wang See C., Chang T.Y., Barabino G.A. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res. Ther. 2018;9:131. doi: 10.1186/s13287-018-0876-3. PubMed DOI PMC
Alessio N., Stellavato A., Squillaro T., Del Gaudio S., Di Bernardo G., Peluso G., De Rosa M., Schiraldi C., Galderisi U. Hybrid complexes of high and low molecular weight hyaluronan delay in vitro replicative senescence of mesenchymal stromal cells: A pilot study for future therapeutic application. Aging. 2018;10:1575–1585. doi: 10.18632/aging.101493. PubMed DOI PMC
Duff S.E., Li C., Garland J.M., Kumar S. CD105 is important for angiogenesis: Evidence and potential applications. FASEB J. 2003;17:984–992. doi: 10.1096/fj.02-0634rev. PubMed DOI
Brinkhof B., Zhang B., Cui Z., Ye H., Wang H. ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene X. 2020;5:100031. doi: 10.1016/j.gene.2020.100031. PubMed DOI PMC
Yang Z.X., Han Z.B., Ji Y.R., Wang Y.W., Liang L., Chi Y., Yang S.G., Li L.N., Luo W.F., Li J.P., et al. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS ONE. 2013;8:e59354. doi: 10.1371/journal.pone.0059354. PubMed DOI PMC
Nieto-Nicolau N., Raquel M., Fariñas O., Savio A., Vilarrodona A., Casaroli-Marano R.P. Extrinsic modulation of integrin α6 and progenitor cell behavior in mesenchymal stem cells. Stem Cell Res. 2020;47:101899. doi: 10.1016/j.scr.2020.101899. PubMed DOI
Foster B.M., Zaidi D., Young T.R., Mobley M.E., Kerr B.A. CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance. Biomedicines. 2018;6:31. doi: 10.3390/biomedicines6010031. PubMed DOI PMC
Edling C.E., Hallberg B. c-Kit—a hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol. 2007;39:1995–1998. doi: 10.1016/j.biocel.2006.12.005. PubMed DOI
Crende O., García-Gallastegui P., Luzuriaga J., Badiola I., de la Hoz C., Unda F., Ibarretxe G., Pineda J. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. Biology. 2020;9:426. doi: 10.3390/biology9120426. PubMed DOI PMC
Espagnolle N., Guilloton F., Deschaseaux F., Gadelorge M., Sensébé L., Bourin P. CD 146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J. Cell. Mol. Med. 2014;18:104–114. doi: 10.1111/jcmm.12168. PubMed DOI PMC
Matsui M., Kobayashi T., Tsutsui T.W. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. Hum. Cell. 2018;31:127–138. doi: 10.1007/s13577-017-0198-2. PubMed DOI PMC
Wei X., Ling J., Wu L., Liu L., Xiao Y. Expression of mineralization markers in dental pulp cells. J. Endod. 2007;33:703–708. doi: 10.1016/j.joen.2007.02.009. PubMed DOI
Khanna-Jain R., Vanhatupa S., Vuorinen A., Sandor G., Suuronen R., Mannerstrom B., Miettinen S. Growth and differentiation of human dental pulp stem cells maintained in fetal bovine serum, human serum and serum-free/xeno-free culture media. Stem Cell Res. Ther. 2012;2 doi: 10.4172/2157-7633.1000126. DOI
Karbanová J., Soukup T., Suchánek J., Pytlík R., Corbeil D., Mokrý J. Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium. Cells Tissues Organs. 2011;193:344–365. doi: 10.1159/000321160. PubMed DOI
Nam H., Kim G.-H., Bae Y.-K., Jeong D.-E., Joo K.-M., Lee K., Lee S.-H. Angiogenic capacity of dental pulp stem cell regulated by SDF-1α-CXCR4 axis. Stem Cells Int. 2017;2017 doi: 10.1155/2017/8085462. PubMed DOI PMC
Young F.I., Telezhkin V., Youde S.J., Langley M.S., Stack M., Kemp P.J., Waddington R.J., Sloan A.J., Song B. Clonal Heterogeneity in the Neuronal and Glial Differentiation of Dental Pulp Stem/Progenitor Cells. Stem Cells Int. 2016;2016:1290561. doi: 10.1155/2016/1290561. PubMed DOI PMC
Alraies A., Canetta E., Waddington R.J., Moseley R., Sloan A.J. Discrimination of Dental Pulp Stem Cell Regenerative Heterogeneity by Single-Cell Raman Spectroscopy. Tissue Eng. Part C Methods. 2019;25:489–499. doi: 10.1089/ten.tec.2019.0129. PubMed DOI
Yang C., Chen Y., Zhong L., You M., Yan Z., Luo M., Zhang B., Yang B., Chen Q. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth. Int. J. Biochem. Cell Biol. 2020;98:415–425. doi: 10.1139/bcb-2019-0253. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Alraies A., Alaidaroos N.Y., Waddington R.J., Moseley R., Sloan A.J. Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol. 2017;18:12. doi: 10.1186/s12860-017-0128-x. PubMed DOI PMC
Álvarez-Viejo M., Menéndez-Menéndez Y., Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World. J. Stem Cells. 2015;7:470–476. doi: 10.4252/wjsc.v7.i2.470. PubMed DOI PMC
Alvarez R., Lee H.L., Hong C., Wang C.Y. Single CD271 marker isolates mesenchymal stem cells from human dental pulp. Int. J. Oral Sci. 2015;7:205–212. doi: 10.1038/ijos.2015.29. PubMed DOI PMC
Mafi P., Hindocha S., Mafi R., Griffin M., Khan W. Adult mesenchymal stem cells and cell surface characterization—a systematic review of the literature. Open J. Orthop. 2011;5:253–260. doi: 10.2174/1874325001105010253. PubMed DOI PMC
Macrin D., Alghadeer A., Zhao Y.T., Miklas J.W., Hussein A.M., Detraux D., Robitaille A.M., Madan A., Moon R.T., Wang Y.J.S.R. Metabolism as an early predictor of DPSCs Aging. Sci. Rep. 2019;9:1–19. doi: 10.1038/s41598-018-37489-4. PubMed DOI PMC