The Effects of Cryogenic Storage on Human Dental Pulp Stem Cells

. 2021 Apr 23 ; 22 (9) : . [epub] 20210423

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33922674

Grantová podpora
Q40/13 and Q40/06 Charles University's program PROGRES

Dental pulp stem cells (DPSCs) are a type of easily accessible adult mesenchymal stem cell. Due to their ease of access, DPSCs show great promise in regenerative medicine. However, the tooth extractions from which DPSCs can be obtained are usually performed at a period of life when donors would have no therapeutic need of them. For this reason, it is imperative that successful stem cell storage techniques are employed so that these cells remain viable for future use. Any such techniques must result in high post-thaw stem cell recovery without compromising stemness, proliferation, or multipotency. Uncontrolled-rate freezing is not a technically or financially demanding technique compared to expensive and laborious controlled-rate freezing techniques. This study was aimed at observing the effect of uncontrolled-rate freezing on DPSCs stored for 6 and 12 months. Dimethyl sulfoxide at a concentration of 10% was used as a cryoprotective agent. Various features such as shape, proliferation capacity, phenotype, and multipotency were studied after DPSC thawing. The DPSCs did not compromise their stemness, viability, proliferation, or differentiating capabilities, even after one year of cryopreservation at -80 °C. After thawing, they retained their stemness markers and low-level expression of hematopoietic markers. We observed a size reduction in recovery DPSCs after one year of storage. This observation indicates that DPSCs can be successfully used in potential clinical applications, even after a year of uncontrolled cryopreservation.

Zobrazit více v PubMed

Ferrúa C.P., Centeno E.G.Z., Rosa L.C.D., Amaral C.C.D., Severo R.F., Sarkis-Onofre R., Nascimento G.G., Cordenonzi G., Bast R.K., Demarco F.F., et al. How has dental pulp stem cells isolation been conducted? A scoping review. Braz. Oral Res. 2017;31:e87. doi: 10.1590/1807-3107bor-2017.vol31.0087. PubMed DOI

Blondeau F., Daniel N.G. Extraction of impacted mandibular third molars: Postoperative complications and their risk factors. J. Can. Dent. Assoc. 2007;73:325. PubMed

Omar Z., Short L., Banting D.W., Saltaji H. Profile changes following extraction orthodontic treatment: A comparison of first versus second premolar extraction. Int. Orthod. 2018;16:91–104. doi: 10.1016/j.ortho.2018.01.017. PubMed DOI

Shih W.Y., Hsieh C.Y., Tsai T.P. Clinical evaluation of the timing of mesiodens removal. J. Chin. Med. Assoc. 2016;79:345–350. doi: 10.1016/j.jcma.2015.10.013. PubMed DOI

Mullen S.F., Critser J.K. The science of cryobiology. Cancer Treat. Res. 2007;138:83–109. doi: 10.1007/978-0-387-72293-1_7. PubMed DOI

Gao D., Critser J.K. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41:187–196. doi: 10.1093/ilar.41.4.187. PubMed DOI

Pegg D.E. Principles of cryopreservation. Methods Mol. Biol. 2015;1257:3–19. doi: 10.1007/978-1-4939-2193-5_1. PubMed DOI

Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 1963;47:347–369. doi: 10.1085/jgp.47.2.347. PubMed DOI PMC

Zambelli A., Poggi G., Da Prada G., Pedrazzoli P., Cuomo A., Miotti D., Perotti C., Preti P., Robustelli della Cuna G. Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res. 1998;18:4705–4708. PubMed

Stolzing A., Naaldijk Y., Fedorova V., Sethe S. Hydroxyethylstarch in Cryopreservation—Mechanisms, Benefits and Problems. Transfus. Apher. Sci. 2012;46:137–147. doi: 10.1016/j.transci.2012.01.007. PubMed DOI

Pilbauerova N., Soukup T., Suchankova Kleplova T., Suchanek J. Enzymatic Isolation, Amplification and Characterization of Dental Pulp Stem Cells. Folia Biol. 2019;65:124–133. PubMed

Li T., Mai Q., Gao J., Zhou C. Cryopreservation of human embryonic stem cells with a new bulk vitrification method. Biol. Reprod. 2010;82:848–853. doi: 10.1095/biolreprod.109.080713. PubMed DOI

Bagchi A., Woods E.J., Critser J.K. Cryopreservation and vitrification: Recent advances in fertility preservation technologies. Expert Rev. Med. Devices. 2008;5:359–370. doi: 10.1586/17434440.5.3.359. PubMed DOI

Thirumala S., Zvonic S., Floyd E., Gimble J.M., Devireddy R.V. Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol. Prog. 2005;21:1511–1524. doi: 10.1021/bp050007q. PubMed DOI

Kojima S., Kaku M., Kawata T., Sumi H., Shikata H., Abonti T.R., Kojima S., Fujita T., Motokawa M., Tanne K. Cryopreservation of rat MSCs by use of a programmed freezer with magnetic field. Cryobiology. 2013;67:258–263. doi: 10.1016/j.cryobiol.2013.08.003. PubMed DOI

Almici C., Ferremi P., Lanfranchi A., Ferrari E., Verardi R., Marini M., Rossi G. Uncontrolled-rate freezing of peripheral blood progenitor cells allows successful engraftment by sparing primitive and committed hematopoietic progenitors. Haematologica. 2003;88:1390–1395. PubMed

Detry G., Calvet L., Straetmans N., Cabrespine A., Ravoet C., Bay J.O., Petre H., Paillard C., Husson B., Merlin E., et al. Impact of uncontrolled freezing and long-term storage of peripheral blood stem cells at −80 °C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transpl. 2014;49:780–785. doi: 10.1038/bmt.2014.53. PubMed DOI

Setia R.D., Arora S., Handoo A., Choudhary D., Sharma S.K., Khandelwal V., Kapoor M., Bajaj S., Dadu T., Dhamija G., et al. Outcome of 51 autologous peripheral blood stem cell transplants after uncontrolled-rate freezing (“dump freezing”) using −80 °C mechanical freezer. Asian J. Transfus. Sci. 2018;12:117–122. doi: 10.4103/ajts.AJTS_42_17. PubMed DOI PMC

Zeng G., Hu Y., Hu X., Zeng W., Liang X., Liu Y., Peng H., Liao Y., Ren Y., Tang Z., et al. Cryopreservation of peripheral blood mononuclear cells using uncontrolled rate freezing. Cell Tissue Bank. 2020;21:631–641. doi: 10.1007/s10561-020-09857-w. PubMed DOI

Kumar A., Bhattacharyya S., Rattan V. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank. 2015;16:513–522. doi: 10.1007/s10561-015-9498-5. PubMed DOI

Raik S., Kumar A., Rattan V., Seth S., Kaur A., Bhatta Charyya S. Assessment of Post-thaw Quality of Dental Mesenchymal Stromal Cells After Long-Term Cryopreservation by Uncontrolled Freezing. Appl. Biochem. Biotechnol. 2020;191:728–743. doi: 10.1007/s12010-019-03216-6. PubMed DOI

Woods E.J., Perry B.C., Hockema J.J., Larson L., Zhou D., Goebel W.S. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology. 2009;59:150–157. doi: 10.1016/j.cryobiol.2009.06.005. PubMed DOI PMC

Suchánek J., Visek B., Soukup T., El-Din Mohamed S.K., Ivancaková R., Mokrỳ J., Aboul-Ezz E.H., Omran A. Stem cells from human exfoliated deciduous teeth--isolation, long term cultivation and phenotypical analysis. Acta Med. 2010;53:93–99. doi: 10.14712/18059694.2016.66. PubMed DOI

Gronthos S., Mankani M., Brahim J., Robey P.G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 2000;97:13625–13630. doi: 10.1073/pnas.240309797. PubMed DOI PMC

Yang X., Li L., Xiao L., Zhang D. Recycle the dental fairy’s package: Overview of dental pulp stem cells. Stem Cell. Res. Ther. 2018;9:347. doi: 10.1186/s13287-018-1094-8. PubMed DOI PMC

Suchanek J., Nasry S.A., Soukup T. The Differentiation Potential of Human Natal Dental Pulp Stem Cells into Insulin-Producing Cells. Folia Biol. 2017;63:132–138. PubMed

Nuti N., Corallo C., Chan B.M., Ferrari M., Gerami-Naini B. Multipotent Differentiation of Human Dental Pulp Stem Cells: A Literature Review. Stem Cell Rev. Rep. 2016;12:511–523. doi: 10.1007/s12015-016-9661-9. PubMed DOI

Smith E.R., Hadidian Z., Mason M.M. The single--and repeated--dose toxicity of dimethyl sulfoxide. Ann. N. Y. Acad. Sci. 1967;141:96–109. doi: 10.1111/j.1749-6632.1967.tb34870.x. PubMed DOI

Food and Drug Administration (FDA) Guidance for Industry: Q3C Tables and List. Food and Drug Administration; Silver Spring, MD, USA: 2017.

Suchánek J., Soukup T., Ivancaková R., Karbanová J., Hubková V., Pytlík R., Kucerová L. Human dental pulp stem cells--isolation and long term cultivation. Acta Med. 2007;50:195–201. doi: 10.14712/18059694.2017.82. PubMed DOI

Laino G., d’Aquino R., Graziano A., Lanza V., Carinci F., Naro F., Pirozzi G., Papaccio G. A new population of human adult dental pulp stem cells: A useful source of living autologous fibrous bone tissue (LAB) J. Bone Min. Res. 2005;20:1394–1402. doi: 10.1359/JBMR.050325. PubMed DOI

Mokry J., Soukup T., Micuda S., Karbanova J., Visek B., Brcakova E., Suchanek J., Bouchal J., Vokurkova D., Ivancakova R. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J. Biomed. Biotechnol. 2010;2010:673513. doi: 10.1155/2010/673513. PubMed DOI PMC

Pilbauerova N., Soukup T., Suchankova Kleplova T., Schmidt J., Suchanek J. The Effect of Cultivation Passaging on the Relative Telomere Length and Proliferation Capacity of Dental Pulp Stem Cells. Biomolecules. 2021;11:464. doi: 10.3390/biom11030464. PubMed DOI PMC

Wang X., Hua T.C., Sun D.W., Liu B., Yang G., Cao Y. Cryopreservation of tissue-engineered dermal replacement in Me2SO: Toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology. 2007;55:60–65. doi: 10.1016/j.cryobiol.2007.05.006. PubMed DOI

Lin C.S., Xin Z.C., Dai J., Lue T.F. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol. Histopathol. 2013;28:1109–1116. doi: 10.14670/hh-28.1109. PubMed DOI PMC

Suchanek J., Kleplova T.S., Kapitan M., Soukup T. The effect of fetal calf serum on human dental pulp stem cells. Acta Med. 2013;56:142–149. doi: 10.14712/18059694.2014.9. PubMed DOI

Venkataramani V., Küffer S., Cheung K.C.P., Jiang X., Trümper L., Wulf G.G., Ströbel P. CD31 Expression Determines Redox Status and Chemoresistance in Human Angiosarcomas. Clin. Cancer Res. 2018;24:460–473. doi: 10.1158/1078-0432.CCR-17-1778. PubMed DOI PMC

Vishwanath V.R., Nadig R.R., Nadig R., Prasanna J.S., Karthik J., Pai V.S. Differentiation of isolated and characterized human dental pulp stem cells and stem cells from human exfoliated deciduous teeth: An in vitro study. J. Conserv. Dent. 2013;16:423–428. doi: 10.4103/0972-0707.117509. PubMed DOI PMC

Mazzilli F., Rossi T., Sabatini L., Pulcinelli F.M., Rapone S., Dondero F., Gazzaniga P.P. Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur. Fertil. 1995;26:145–148. PubMed

Cook-Mills J.M., Marchese M.E., Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: Regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal. 2011;15:1607–1638. doi: 10.1089/ars.2010.3522. PubMed DOI PMC

Gardin C., Ricci S., Ferroni L. Dental Stem Cells (DSCs): Classification and Properties. In: Zavan B., Bressan E., editors. Dental Stem Cells: Regenerative Potential. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–25. DOI

Matsui M., Kobayashi T., Tsutsui T.W. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. Hum. Cell. 2018;31:127–138. doi: 10.1007/s13577-017-0198-2. PubMed DOI PMC

Karbanová J., Soukup T., Suchánek J., Pytlík R., Corbeil D., Mokrý J. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs. 2011;193:344–365. doi: 10.1159/000321160. PubMed DOI

Wang X.T., Rao N.Q., Fang T.J., Zhao Y.M., Ge L.H. Comparison of the properties of CD146 positive and CD146 negative subpopulations of stem cells from human exfoliated deciduous teeth. Beijing Da Xue Xue Bao Yi Xue Ban. 2018;50:284–292. PubMed

Rusu M.C., Loreto C., Sava A., Manoiu V., Didilescu A.C. Human adult dental pulp CD117/c-kit-positive networks of stromal cells. Folia Morphol. 2014;73:68–72. doi: 10.5603/FM.2014.0009. PubMed DOI

Blume-Jensen P., Claesson-Welsh L., Siegbahn A., Zsebo K.M., Westermark B., Heldin C.H. Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J. 1991;10:4121–4128. doi: 10.1002/j.1460-2075.1991.tb04989.x. PubMed DOI PMC

LeBien T.W., McCormack R.T. The common acute lymphoblastic leukemia antigen (CD10)--emancipation from a functional enigma. Blood. 1989;73:625–635. doi: 10.1182/blood.V73.3.625.625. PubMed DOI

Jongeneel C.V., Quackenbush E.J., Ronco P., Verroust P., Carrel S., Letarte M. Common acute lymphoblastic leukemia antigen expressed on leukemia and melanoma cell lines has neutral endopeptidase activity. J. Clin. Invest. 1989;83:713–717. doi: 10.1172/JCI113936. PubMed DOI PMC

Ledesma-Martinez E., Mendoza-Nunez V.M., Santiago-Osorio E. Mesenchymal Stem Cells Derived from Dental Pulp: A Review. Stem Cells Int. 2016;2016:4709572. doi: 10.1155/2016/4709572. PubMed DOI PMC

Verma N.K., Kelleher D. Not Just an Adhesion Molecule: LFA-1 Contact Tunes the T Lymphocyte Program. J. Immunol. 2017;199:1213–1221. doi: 10.4049/jimmunol.1700495. PubMed DOI

Todd R.F., 3rd The continuing saga of complement receptor type 3 (CR3) J. Clin. Invest. 1996;98:1–2. doi: 10.1172/JCI118752. PubMed DOI PMC

Gomez J.C., Doerschuk C.M. The role of CD18 in the production and release of neutrophils from the bone marrow. Lab. Invest. 2010;90:599–610. doi: 10.1038/labinvest.2010.4. PubMed DOI PMC

Rodriguez-Lozano F.J., Bueno C., Insausti C.L., Meseguer L., Ramirez M.C., Blanquer M., Marin N., Martinez S., Moraleda J.M. Mesenchymal stem cells derived from dental tissues. Int. Endod. J. 2011;44:800–806. doi: 10.1111/j.1365-2591.2011.01877.x. PubMed DOI

Lertkiatmongkol P., Liao D., Mei H., Hu Y., Newman P.J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31) Curr. Opin. Hematol. 2016;23:253–259. doi: 10.1097/MOH.0000000000000239. PubMed DOI PMC

Sidney L.E., Branch M.J., Dunphy S.E., Dua H.S., Hopkinson A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014;32:1380–1389. doi: 10.1002/stem.1661. PubMed DOI PMC

Morath I., Hartmann T.N., Orian-Rousseau V. CD44: More than a mere stem cell marker. Int. J. Biochem. Cell Biol. 2016;81:166–173. doi: 10.1016/j.biocel.2016.09.009. PubMed DOI

Rheinländer A., Schraven B., Bommhardt U. CD45 in human physiology and clinical medicine. Immunol. Lett. 2018;196:22–32. doi: 10.1016/j.imlet.2018.01.009. PubMed DOI

Sundberg M., Jansson L., Ketolainen J., Pihlajamäki H., Suuronen R., Skottman H., Inzunza J., Hovatta O., Narkilahti S. CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res. 2009;2:113–124. doi: 10.1016/j.scr.2008.08.001. PubMed DOI

Weng J., Krementsov D.N., Khurana S., Roy N.H., Thali M. Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J. Virol. 2009;83:7467–7474. doi: 10.1128/JVI.00163-09. PubMed DOI PMC

Kweekel D.M., Antonini N.F., Nortier J.W., Punt C.J., Gelderblom H., Guchelaar H.J. Explorative study to identify novel candidate genes related to oxaliplatin efficacy and toxicity using a DNA repair array. Br. J. Cancer. 2009;101:357–362. doi: 10.1038/sj.bjc.6605134. PubMed DOI PMC

Craig W., Kay R., Cutler R.L., Lansdorp P.M. Expression of Thy-1 on human hematopoietic progenitor cells. J. Exp. Med. 1993;177:1331–1342. doi: 10.1084/jem.177.5.1331. PubMed DOI PMC

Saalbach A., Anderegg U. Thy-1: More than a marker for mesenchymal stromal cells. FASEB J. 2019;33:6689–6696. doi: 10.1096/fj.201802224R. PubMed DOI

Dallas N.A., Samuel S., Xia L., Fan F., Gray M.J., Lim S.J., Ellis L.M. Endoglin (CD105): A marker of tumor vasculature and potential target for therapy. Clin. Cancer Res. 2008;14:1931–1937. doi: 10.1158/1078-0432.CCR-07-4478. PubMed DOI

Fonsatti E., Maio M. Highlights on endoglin (CD105): From basic findings towards clinical applications in human cancer. J. Transl. Med. 2004;2:18. doi: 10.1186/1479-5876-2-18. PubMed DOI PMC

Martinelli R., Gegg M., Longbottom R., Adamson P., Turowski P., Greenwood J. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol. Biol. Cell. 2009;20:995–1005. doi: 10.1091/mbc.e08-06-0636. PubMed DOI PMC

Cook-Mills J.M. VCAM-1 signals during lymphocyte migration: Role of reactive oxygen species. Mol. Immunol. 2002;39:499–508. doi: 10.1016/S0161-5890(02)00206-7. PubMed DOI PMC

Covas D.T., Panepucci R.A., Fontes A.M., Silva W.A., Jr., Orellana M.D., Freitas M.C., Neder L., Santos A.R., Peres L.C., Jamur M.C., et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp. Hematol. 2008;36:642–654. doi: 10.1016/j.exphem.2007.12.015. PubMed DOI

Russell K.C., Phinney D.G., Lacey M.R., Barrilleaux B.L., Meyertholen K.E., O’Connor K.C. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells. 2010;28:788–798. doi: 10.1002/stem.312. PubMed DOI

Swart G.W. Activated leukocyte cell adhesion molecule (CD166/ALCAM): Developmental and mechanistic aspects of cell clustering and cell migration. Eur. J. Cell Biol. 2002;81:313–321. doi: 10.1078/0171-9335-00256. PubMed DOI

Ponnaiyan D., Bhat K.M., Bhat G.S. Comparison of immuno-phenotypes of stem cells from human dental pulp and periodontal ligament. Int. J. Immunopathol. Pharm. 2012;25:127–134. doi: 10.1177/039463201202500115. PubMed DOI

Quirici N., Soligo D., Bossolasco P., Servida F., Lumini C., Deliliers G.L. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 2002;30:783–791. doi: 10.1016/S0301-472X(02)00812-3. PubMed DOI

Hewitt E.W. The MHC class I antigen presentation pathway: Strategies for viral immune evasion. Immunology. 2003;110:163–169. doi: 10.1046/j.1365-2567.2003.01738.x. PubMed DOI PMC

Machado Cde V., Telles P.D., Nascimento I.L. Immunological characteristics of mesenchymal stem cells. Rev. Bras. Hematol. Hemoter. 2013;35:62–67. doi: 10.5581/1516-8484.20130017. PubMed DOI PMC

Lv F.J., Tuan R.S., Cheung K.M., Leung V.Y. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–1419. doi: 10.1002/stem.1681. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Innovative Approach in the Cryogenic Freezing Medium for Mesenchymal Stem Cells

. 2022 Apr 20 ; 12 (5) : . [epub] 20220420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...