Innovative Approach in the Cryogenic Freezing Medium for Mesenchymal Stem Cells
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35625538
PubMed Central
PMC9138570
DOI
10.3390/biom12050610
PII: biom12050610
Knihovny.cz E-resources
- Keywords
- adipose tissue-derived stem cells, cryopreservation, cryoprotective agent, dental pulp stem cells, human mesenchymal stem cells, hyaluronic acid,
- MeSH
- Dimethyl Sulfoxide * pharmacology MeSH
- Cryopreservation methods MeSH
- Cryoprotective Agents pharmacology MeSH
- Culture Media MeSH
- Humans MeSH
- Mesenchymal Stem Cells * MeSH
- Freezing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dimethyl Sulfoxide * MeSH
- Cryoprotective Agents MeSH
- Culture Media MeSH
The physical stresses during cryopreservation affect stem cell survival and further proliferation. To minimize or prevent cryoinjury, cryoprotective agents (CPAs) are indispensable. Despite the widespread use of 10% dimethyl sulfoxide (DMSO), there are concerns about its potential adverse effects. To bypass those effects, combinations of CPAs have been investigated. This study aimed to verify whether high-molecular-hyaluronic acid (HMW-HA) serves as a cryoprotectant when preserving human mesenchymal stem cells (hMSCs) to reduce the DMSO concentration in the cryopreservation medium. We studied how 0.1% or 0.2% HMW-HA combined with reduced DMSO concentrations (from 10% to 5%, and 3%) affected total cell count, viability, immunophenotype, and differentiation potential post-cryopreservation. Immediately after cell revival, the highest total cell count was observed in 10% DMSO-stored hMSC. However, two weeks after cell cultivation an increased cell count was seen in the HMW-HA-stored groups along with a continued increase in hMSCs stored using 3% DMSO and 0.1% HMW-HA. The increased total cell count corresponded to elevated expression of stemness marker CD49f. The HA-supplemented cryomedium did not affect the differential potential of hMSC. Our results will participate in producing a ready-to-use product for cryopreservation of mesenchymal stem cells.
See more in PubMed
Gronthos S., Mankani M., Brahim J., Robey P.G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 2000;97:13625–13630. doi: 10.1073/pnas.240309797. PubMed DOI PMC
Nuti N., Corallo C., Chan B.M., Ferrari M., Gerami-Naini B. Multipotent Differentiation of Human Dental Pulp Stem Cells: A Literature Review. Stem Cell Rev. Rep. 2016;12:511–523. doi: 10.1007/s12015-016-9661-9. PubMed DOI
Pilbauerova N., Schmidt J., Soukup T., Koberova Ivancakova R., Suchanek J. The Effects of Cryogenic Storage on Human Dental Pulp Stem Cells. Int. J. Mol. Sci. 2021;22:4432. doi: 10.3390/ijms22094432. PubMed DOI PMC
Kumar A., Bhattacharyya S., Rattan V. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank. 2015;16:513–522. doi: 10.1007/s10561-015-9498-5. PubMed DOI
Yan M., Nada O.A., Smeets R., Gosau M., Friedrich R.E., Kluwe L. Compare features of human dental pulp cells cultured from pulp tissues with and without cryopreservation. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2020;4:445–451. doi: 10.5507/bp.2020.061. PubMed DOI
Davies O.G., Smith A.J., Cooper P.R., Shelton R.M., Scheven B.A. The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. Cryobiology. 2014;69:342–347. doi: 10.1016/j.cryobiol.2014.08.003. PubMed DOI
Perry B.C., Zhou D., Wu X., Yang F.C., Byers M.A., Chu T.M., Hockema J.J., Woods E.J., Goebel W.S. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng. Part C Methods. 2008;14:149–156. doi: 10.1089/ten.tec.2008.0031. PubMed DOI PMC
Woods E.J., Perry B.C., Hockema J.J., Larson L., Zhou D., Goebel W.S. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology. 2009;59:150–157. doi: 10.1016/j.cryobiol.2009.06.005. PubMed DOI PMC
Pegg D.E. Principles of cryopreservation. Methods Mol. Biol. 2015;1257:3–19. doi: 10.1007/978-1-4939-2193-5_1. PubMed DOI
Mazur P. Cryobiology: The freezing of biological systems. Science. 1970;168:939–949. doi: 10.1126/science.168.3934.939. PubMed DOI
Stolzing A., Naaldijk Y., Fedorova V., Sethe S. Hydroxyethylstarch in cryopreservation—Mechanisms, benefits and problems. Transfus. Apher. Sci. 2012;46:137–147. doi: 10.1016/j.transci.2012.01.007. PubMed DOI
Rowe A.W. Biochemical aspects of cryoprotective agents in freezing and thawing. Cryobiology. 1966;3:12–18. doi: 10.1016/S0011-2240(66)80145-1. PubMed DOI
Karow A.M., Jr. Cryoprotectants—A new class of drugs. J. Pharm. Pharmacol. 1969;21:209–223. doi: 10.1111/j.2042-7158.1969.tb08235.x. PubMed DOI
Pilbauerova N., Suchanek J. Cryopreservation of Dental Stem Cells. Acta Med. 2018;61:1–7. doi: 10.14712/18059694.2018.16. PubMed DOI
Elliott G.D., Wang S., Fuller B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017;76:74–91. doi: 10.1016/j.cryobiol.2017.04.004. PubMed DOI
Hunt C.J. Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfus. Med. Hemother. 2011;38:107–123. doi: 10.1159/000326623. PubMed DOI PMC
Rowley S.D., Feng Z., Yadock D., Holmberg L., Macleod B., Heimfeld S. Post-thaw removal of DMSO does not completely abrogate infusional toxicity or the need for pre-infusion histamine blockade. Cytotherapy. 1999;1:439–446. doi: 10.1080/0032472031000141303. PubMed DOI
Li R., Hornberger K., Dutton J.R., Hubel A. Cryopreservation of Human iPS Cell Aggregates in a DMSO-Free Solution-An Optimization and Comparative Study. Front. Bioeng. Biotechnol. 2020;8:1. doi: 10.3389/fbioe.2020.00001. PubMed DOI PMC
Hayakawa J., Joyal E.G., Gildner J.F., Washington K.N., Phang O.A., Uchida N., Hsieh M.M., Tisdale J.F. 5% dimethyl sulfoxide (DMSO) and pentastarch improves cryopreservation of cord blood cells over 10% DMSO. Transfusion. 2010;50:2158–2166. doi: 10.1111/j.1537-2995.2010.02684.x. PubMed DOI PMC
Mitrus I., Smagur A., Giebel S., Gliwinska J., Prokop M., Glowala-Kosinska M., Chwieduk A., Sadus-Wojciechowska M., Tukiendorf A., Holowiecki J. A faster reconstitution of hematopoiesis after autologous transplantation of hematopoietic cells cryopreserved in 7.5% dimethyl sulfoxide if compared to 10% dimethyl sulfoxide containing medium. Cryobiology. 2013;67:327–331. doi: 10.1016/j.cryobiol.2013.09.167. PubMed DOI
Fujisawa R., Mizuno M., Katano H., Otabe K., Ozeki N., Tsuji K., Koga H., Sekiya I. Cryopreservation in 95% serum with 5% DMSO maintains colony formation and chondrogenic abilities in human synovial mesenchymal stem cells. BMC Musculoskelet. Disord. 2019;20:316. doi: 10.1186/s12891-019-2700-3. PubMed DOI PMC
Lee S.Y., Huang G.W., Shiung J.N., Huang Y.H., Jeng J.H., Kuo T.F., Yang J.C., Yang W.C. Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs. 2012;196:23–33. doi: 10.1159/000331247. PubMed DOI
Schmidt J., Pilbauerova N., Soukup T., Suchankova-Kleplova T., Suchanek J. Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro. Biomolecules. 2021;11:22. doi: 10.3390/biom11010022. PubMed DOI PMC
Niloy K.K., Gulfam M., Compton K.B., Li D., Huang G.T.J., Lowe T.L. Methacrylated Hyaluronic Acid–Based Hydrogels Maintain Stemness in Human Dental Pulp Stem Cells. Regen. Eng. Transl. Med. 2020;6:262–272. doi: 10.1007/s40883-019-00115-4. DOI
Jones T.D., Kefi A., Sun S., Cho M., Alapati S.B. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading. Adv. Med. 2016;2016:7363579. doi: 10.1155/2016/7363579. PubMed DOI PMC
Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859. PubMed DOI
Matsumura K., Kawamoto K., Takeuchi M., Yoshimura S., Tanaka D., Hyon S.H. Cryopreservation of a Two-Dimensional Monolayer Using a Slow Vitrification Method with Polyampholyte to Inhibit Ice Crystal Formation. ACS Biomater. Sci. Eng. 2016;2:1023–1029. doi: 10.1021/acsbiomaterials.6b00150. PubMed DOI
Meryman H.T. Cryoprotective agents. Cryobiology. 1971;8:173–183. doi: 10.1016/0011-2240(71)90024-1. PubMed DOI
Berz D., McCormack E.M., Winer E.S., Colvin G.A., Quesenberry P.J. Cryopreservation of hematopoietic stem cells. Am. J. Hematol. 2007;82:463–472. doi: 10.1002/ajh.20707. PubMed DOI PMC
Weng L., Beauchesne P.R. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology. 2020;94:9–17. doi: 10.1016/j.cryobiol.2020.03.012. PubMed DOI
Weng L., Li W., Zuo J., Chen C. Osmolality and Unfrozen Water Content of Aqueous Solution of Dimethyl Sulfoxide. J. Chem. Eng. Data. 2011;56:3175–3182. doi: 10.1021/je2002607. DOI
Wang X., Hua T.C., Sun D.W., Liu B., Yang G., Cao Y. Cryopreservation of tissue-engineered dermal replacement in Me2SO: Toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology. 2007;55:60–65. doi: 10.1016/j.cryobiol.2007.05.006. PubMed DOI
Halle P., Tournilhac O., Knopinska-Posluszny W., Kanold J., Gembara P., Boiret N., Rapatel C., Berger M., Travade P., Angielski S., et al. Uncontrolled-rate freezing and storage at −80 degrees C, with only 3.5-percent DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion. 2001;41:667–673. doi: 10.1046/j.1537-2995.2001.41050667.x. PubMed DOI
Syme R., Bewick M., Stewart D., Porter K., Chadderton T., Glück S. The role of depletion of dimethyl sulfoxide before autografting: On hematologic recovery, side effects, and toxicity. Biol. Blood Marrow Transplant. 2004;10:135–141. doi: 10.1016/j.bbmt.2003.09.016. PubMed DOI
Karlsson J.O., Toner M. Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials. 1996;17:243–256. doi: 10.1016/0142-9612(96)85562-1. PubMed DOI
Sudha P.N., Rose M.H. Beneficial effects of hyaluronic acid. Adv. Food Nutr. Res. 2014;72:137–176. doi: 10.1016/b978-0-12-800269-8.00009-9. PubMed DOI
Yu C.J., Ko C.J., Hsieh C.H., Chien C.T., Huang L.H., Lee C.W., Jiang C.C. Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J. Proteom. 2014;99:40–53. doi: 10.1016/j.jprot.2014.01.016. PubMed DOI
Průšová A., Šmejkalová D., Chytil M., Velebný V., Kučerík J. An alternative DSC approach to study hydration of hyaluronan. Carbohydr. Polym. 2010;82:498–503. doi: 10.1016/j.carbpol.2010.05.022. PubMed DOI
Sbracia M., Grasso J., Sayme N., Stronk J., Huszar G. Hyaluronic acid substantially increases the retention of motility in cryopreserved/thawed human spermatozoa. Hum. Reprod. 1997;12:1949–1954. doi: 10.1093/humrep/12.9.1949. PubMed DOI
Majumdar M.K., Keane-Moore M., Buyaner D., Hardy W.B., Moorman M.A., McIntosh K.R., Mosca J.D. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 2003;10:228–241. doi: 10.1007/BF02256058. PubMed DOI
Krebsbach P.H., Villa-Diaz L.G. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker. Stem Cells Dev. 2017;26:1090–1099. doi: 10.1089/scd.2016.0319. PubMed DOI PMC