• This record comes from PubMed

New Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation-A Primary Culture Approach

. 2018 Mar 29 ; 19 (4) : . [epub] 20180329

Language English Country Switzerland Media electronic

Document type Journal Article

The oral mucosal tissue is a compound structure composed of morphologically and physiologically different cell types. The morphological modification involves genetically determined lifespan, which may be recognized as the balance between cell survival and apoptosis. Although the biochemical processes and pathways in oral mucosa, with special regards to drug transport, delivery, and metabolism, are well known, the cellular physiological homeostasis in this tissue requires further investigation. The porcine buccal pouch mucosal cells (BPMCs) collected from 20 pubertal crossbred Landrace gilts, were used in this study. Immediately after recovery, the oral mucosa was separated micro-surgically, and treated enzymatically. The dispersed cells were transferred into primary in vitro culture systems for a long-term cultivation of 30 days. After each step of in vitro culture (IVC), the cells were collected for isolation of total RNA at 24 h, 7, 15, and 30 days of IVC. While the expression was analyzed for days 7, 15, and 30, the 24th hour was used as a reference for outcome calibration. The gene expression profile was determined using Affymetrix microarray assays and necessary procedures. In results, we observed significant up-regulation of SCARB1, PTGS2, DUSP5, ITGB3, PLK2, CCL2, TGFB1, CCL8, RFC4, LYN, ETS1, REL, LIF, SPP1, and FGER1G genes, belonging to two ontological groups, namely "positive regulation of metabolic process", and "regulation of homeostatic process" at 7 day of IVC as compared to down-regulation at days 15 and 30. These findings suggest that the metabolic processes and homeostatic regulations are much more intense in porcine mucosal cells at day 7 of IVC. Moreover, the increased expression of marker genes, for both of these ontological groups, may suggest the existence of not only "morphological lifespan" during tissue keratinization, but also "physiological checkpoint" dedicated to metabolic processes in oral mucosa. This knowledge may be useful for preclinical experiments with drugs delivery and metabolism in both animals and humans.

See more in PubMed

Borys S., Khozmi R., Kranc W., Bryja A., Dyszkiewicz-Konwińska M., Jeseta M., Kempisty B. Recent findings of the types of programmed cell death. Adv. Cell Biol. 2017;5:43–49. doi: 10.1515/acb-2017-0004. DOI

Bryja A., Dyszkiewicz-Konwińska M., Budna J., Ciesiółka S., Kranc W., Borys S., Jeseta M., Urbaniak O., Bukowska D., Antosik P., et al. Expression of cell mitotic progression proteins and keratinocyte markers in porcine buccal pouch mucosal cells during short-term, real-time primary culture. J. Biol. Regul. Homeost. Agents. 2017;31:297–309. PubMed

Bryja A., Dyszkiewicz-Konwińska M., Budna J., Kranc W., Chachuła A., Borys S., Ciesiółka S., Ciesiółka J., Prylinski M., Prylinski D., et al. The biomedical aspects of oral mucosal epithelial cell culture in mammals. J. Biol. Regul. Homeost. Agents. 2017;31:81–85. PubMed

Bryja A., Dyszkiewicz-Konwińska M., Chachuła A., Ciesiółka S., Kranc W., Bukowska D., Antosik P., Bruska M., Nowicki M., Zabel M., et al. Differential expression and distribution of cytokeratins and vimentin in buccal pouch mucosal cells during real-time cell proliferation: Research based on a porcine model. J. Biol. Regul. Homeost. Agents. 2016;30:951–960. PubMed

Kranc W., Celichowski P., Budna J., Khozmi R., Bryja A., Ciesiółka S., Rybska M., Borys S., Jeseta M., Bukowska D., et al. Positive Regulation of Macromolecule Metabolic Process Belongs to the Main Mechanisms Crucial for Porcine Ooocytes Maturation. Adv. Cell Biol. 2017;5:15–31. doi: 10.1515/acb-2017-0002. DOI

Nawrocki M.J., Budna J., Celichowski P., Khozmi R., Bryja A., Kranc W., Borys S., Ciesiółka S., Ciesiółka S., Jeseta M., et al. Analysis of fructose and mannose—Regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro. Adv. Cell Biol. 2017;5:129–135. doi: 10.1515/acb-2017-0011. DOI

Nawrocki M.J., Celichowski P., Budna J., Bryja A., Kranc W., Ciesiółka S., Borys S., Knap S., Jeseta M., Khozmi R., et al. The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation. Adv. Cell Biol. 2017;5:135–142. doi: 10.1515/acb-2017-0012. DOI

Sawada A., Wakabayashi N., Ona M., Suzuki T. Viscoelasticity of Human Oral Mucosa. J. Dent. Res. 2011;90:590–595. doi: 10.1177/0022034510396881. PubMed DOI

Chen J., Ahmad R., Li W., Swain M., Li Q. Biomechanics of oral mucosa. J. R. Soc. Interface. 2015;12:20150325. doi: 10.1098/rsif.2015.0325. PubMed DOI PMC

Bryja A., Dyszkiewicz-Konwińska M., Budna J., Kranc W., Chachuła A., Ciesiółka S., Sumelka E., Krajecki M., Bukowska D., Antosik P., et al. Carcinogenesis in mammalian oral mucosa from the perspective of biomedical research. Med. Weter. 2017;73:82–87. doi: 10.21521/mw.5641. DOI

Rolin G., Placet V., Jacquet E., Tauzin H., Robin S., Pazart L., Viennet C., Saas P., Muret P., Binda D., et al. Development and characterization of a human dermal equivalent with physiological mechanical properties. Skin Res. Technol. 2012;18:251–258. doi: 10.1111/j.1600-0846.2011.00564.x. PubMed DOI

Davis N.G., Phillips A., Becker D.L. Connexin dynamics in the privileged wound healing of the buccal mucosa. Wound Repair Regen. 2013;21:571–578. doi: 10.1111/wrr.12054. PubMed DOI

Guzmán-Uribe D., Alvarado-Estrada K.N., Pierdant-Pérez M., Torres-Álvarez B., Sánchez-Aguilar J.M., Rosales-Ibáñez R. Oral mucosa: An alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects. J. Appl. Oral Sci. 2017;25:186–195. doi: 10.1590/1678-77572016-0217. PubMed DOI PMC

Dyszkiewicz-Konwińska M., Bryja A., Jopek K., Budna J., Bukowska D., Antosik P., Bruska M., Nowicki M., Zabel M., Kempisty B. Expression of connexins in porcine buccal pouch mucosa cells during real-time long-term cells proliferation in vitro—A primary culture approache. J. Biol. Regul. Homeost. Agents. 2017;31:567–577. PubMed

Huveneers S., Truong H., Danen E.H.J. Integrins: Signaling, disease, and therapy. Int. J. Radiat. Biol. 2007;83:743–751. doi: 10.1080/09553000701481808. PubMed DOI

Li R., Pendergast A.M. Arg kinase regulates epithelial cell polarity by targeting β1-integrin and small GTPase pathways. Curr. Biol. 2011;21:1534–1542. doi: 10.1016/j.cub.2011.08.023. PubMed DOI PMC

Lee J.L., Streuli C.H. Integrins and epithelial cell polarity. J. Cell Sci. 2014;127:3217–3225. doi: 10.1242/jcs.146142. PubMed DOI PMC

Akhtar N., Streuli C.H. An integrin–ILK–microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat. Cell Biol. 2013;15:17–27. doi: 10.1038/ncb2646. PubMed DOI PMC

Lee M., Vasioukhin V. Cell polarity and cancer—Cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci. 2008;121:1141–1150. doi: 10.1242/jcs.016634. PubMed DOI

Feigin M.E., Muthuswamy S.K. Polarity proteins regulate mammalian cell-cell junctions and cancer pathogenesis. Curr. Opin. Cell Biol. 2009;21:694–700. doi: 10.1016/j.ceb.2009.07.003. PubMed DOI PMC

Zovein A.C., Luque A., Turlo K.A., Hofmann J.J., Yee K.M., Becker M.S., Fassler R., Mellman I., Lane T.F., LuisaIruela-Arispe M., et al. β1 Integrin Establishes Endothelial Cell Polarity and Arteriolar Lumen Formation via a Par3-Dependent Mechanism. Dev. Cell. 2010;18:39–51. doi: 10.1016/j.devcel.2009.12.006. PubMed DOI PMC

Yu W., Datta A., Leroy P., O’Brien L.E., Mak G., Jou T.S., Matlin K.S., Mostov K.E., Zegers M.M. 1-Integrin Orients Epithelial Polarity via Rac1 and Laminin. Mol. Biol. Cell. 2004;16:433–445. doi: 10.1091/mbc.E04-05-0435. PubMed DOI PMC

Gómez-Lamarca M.J., Cobreros-Reguera L., Ibáñez-Jiménez B., Palacios I.M., Martín-Bermudo M.D. Integrins regulate epithelial cell differentiation by modulating Notch activity. J. Cell Sci. 2014;127:4667–4678. doi: 10.1242/jcs.153122. PubMed DOI PMC

Sarrazy V., Datta A., Leroy P., O’Brien L.E., Mak G., Jou T.S., Matlin K.S., Mostov K.E., Zegers M.M. Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc. Res. 2014;102:407–417. doi: 10.1093/cvr/cvu053. PubMed DOI PMC

Li W., Zhang B., Li H., Zhao C., Zhong Y., Sun J., Lv S. TGF β1 Mediates Epithelial Mesenchymal Transition via β6 Integrin Signaling Pathway in Breast Cancer. Cancer Investig. 2014;32:409–415. doi: 10.3109/07357907.2014.933235. PubMed DOI

Diegelmann R.F., Evans M.C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 2004;9:283–289. doi: 10.2741/1184. PubMed DOI

Massagué J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012;13:616–630. doi: 10.1038/nrm3434. PubMed DOI PMC

Cirillo N., Hassona Y., Celentano A., Lim K.P., Manchella S., Parkinson E.K., Prime S.S. Cancer-associated fibroblasts regulate keratinocyte cell–cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis. 2017;38:76–85. doi: 10.1093/carcin/bgw113. PubMed DOI

Kamath V., Krishnamurthy S., Satelur K., Rajkumar K. Transforming growth factor-β1 and TGF-β2 act synergistically in the fibrotic pathway in oral submucous fibrosis: An immunohistochemical observation. Indian J. Med. Paediatr. Oncol. 2015;36:111. doi: 10.4103/0971-5851.158842. PubMed DOI PMC

Maria S., Kamath V., Satelur K., Rajkumar K. Evaluation of transforming growth factor beta1 gene in oral submucous fibrosis induced in Sprague-Dawley rats by injections of areca nut and pan masala (commercial areca nut product) extracts. J. Cancer Res. Ther. 2016;12:379. PubMed

Rajalalitha P., Vali S. Molecular pathogenesis of oral submucous fibrosis—A collagen metabolic disorder. J. Oral Pathol. Med. 2005;34:321–328. doi: 10.1111/j.1600-0714.2005.00325.x. PubMed DOI

Yang H., Fang L., Zhan R., Hegarty J.M., Ren J., Hsiai T.K., Gleeson J.G., Miller Y.I., Trejo J., Chi N.C. Polo-like kinase 2 regulates angiogenic sprouting and blood vessel development. Dev. Biol. 2015;404:49–60. doi: 10.1016/j.ydbio.2015.05.011. PubMed DOI PMC

Lowell C. Src-family kinases: Rheostats of immune cell signaling. Mol. Immunol. 2004;41:631–643. doi: 10.1016/j.molimm.2004.04.010. PubMed DOI

Xu Y., Harder K.W., Huntington N.D., Hibbs M.L., Tarlinton D.M. Lyn Tyrosine Kinase: Accentuating the Positive and the Negative. Immunity. 2005;22:9–18. doi: 10.1016/j.immuni.2004.12.004. PubMed DOI

Lim Y.J., Koo J.E., Hong E.H., Park Z.Y., Lim K.M., Bae O.N., Lee J.Y. A Src-family-tyrosine kinase, Lyn, is required for efficient IFN-β expression in pattern recognition receptor, RIG-I, signal pathway by interacting with IPS-1. Cytokine. 2015;72:63–70. doi: 10.1016/j.cyto.2014.12.008. PubMed DOI

Chen D., Yang K., Zhang G., Mei J., Xiang L. Screen and analysis of key disease genes for precancerous lesions of oral buccal mucosa induced by DMBA in golden hamsters. Oncol. Lett. 2011;2:265–271. doi: 10.3892/ol.2010.228. PubMed DOI PMC

Garrett-Sinha L.A. Review of Ets1 structure, function, and roles in immunity. Cell. Mol. Life Sci. 2013;70:3375–3390. doi: 10.1007/s00018-012-1243-7. PubMed DOI PMC

Mayeux J., Skaug B., Luo W., Russell L.M., John S., Saelee P., Abbasi H., Li Q.-Z., Garrett-Sinha L.A., Satterthwaite A.B. Genetic Interaction between Lyn, Ets1, and Btk in the Control of Antibody Levels. J. Immunol. 2015;195:1955–1963. doi: 10.4049/jimmunol.1500165. PubMed DOI PMC

Oikawa T., Yamada T. Molecular biology of the Ets family of transcription factors. Gene. 2003;303:11–34. doi: 10.1016/S0378-1119(02)01156-3. PubMed DOI

Vairaktaris E., Spyridonidou S., Goutzanis L., Vylliotis A., Lazaris A., Donta I., Perrea D., Yapijakis C., Patsouris E. Diabetes and oral oncogenesis. Anticancer Res. 2007;27:4185–4193. PubMed

Vairaktaris E., Spyridonidou S., Papakosta V., Vylliotis A., Lazaris A., Perrea D., Yapijakis C., Patsouris E. The hamster model of sequential oral oncogenesis. Oral Oncol. 2008;44:315–324. doi: 10.1016/j.oraloncology.2007.08.015. PubMed DOI

Wang D., Dubois R.N. Prostaglandins and cancer. Gut. 2006;55:115–122. doi: 10.1136/gut.2004.047100. PubMed DOI PMC

Yip-Schneider M.T., Barnard D.S., Billings S.D., Cheng L., Heilman D.K., Lin A., Marshall S.J., Crowell P.L., Marshall M.S., Sweeney C.J. Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis. 2000;21:139–146. doi: 10.1093/carcin/21.2.139. PubMed DOI

Lee L.M., Pan C.C., Cheng C.J., Chi C.W., Liu T.Y. Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res. 2001;21:1291–1294. PubMed

Byatnal A.A., Byatnal A., Sen S., Guddattu V., Solomon M.C. Cyclooxygenase-2—An Imperative Prognostic Biomarker in Oral Squamous Cell Carcinoma—An Immunohistochemical Study. Pathol. Oncol. Res. 2015;21:1123–1131. doi: 10.1007/s12253-015-9940-9. PubMed DOI

Seyedmajidi M., Shafaee S., Siadati S., Khorasani M., Bijani A., Ghasemi N. Cyclo-oxygenase-2 expression in oral squamous cell carcinoma. J. Cancer Res. Ther. 2014;10:1024. doi: 10.4103/0973-1482.138205. PubMed DOI

Mauro A., Lipari L., Leone A., Tortorici S., Burruano F., Provenzano S., Gerbino A., Buscemi M. Expression of cyclooxygenase-1 and cyclooxygenase-2 in normal and pathological human oral mucosa. Folia Histochem. Cytobiol. 2011;48:555–563. doi: 10.2478/v10042-010-0066-3. PubMed DOI

Huang D.W., Sherman B.T., Tan Q., Kir J., Liu D., Bryant D., Guo Y., Stephens R., Baseler M.W., Lane H.C., et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC

Von Mering C., Jensen L.J., Snel B., Hooper S.D., Krupp M., Foglierini M., Jouffre N., Huynen M.A., Bork P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–D437. doi: 10.1093/nar/gki005. PubMed DOI PMC

Kamburov A., Pentchev K., Galicka H., Wierling C., Lehrach H., Herwig R. ConsensusPathDB: Toward a more complete picture of cell biology. Nucleic Acids Res. 2011;39:D712–D717. doi: 10.1093/nar/gkq1156. PubMed DOI PMC

Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...