Photoelectron spectra of alkali metal-ammonia microjets: From blue electrolyte to bronze metal
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
Deutsche Forschungsgemeinschaft. - International
PubMed
32499436
DOI
10.1126/science.aaz7607
PII: 368/6495/1086
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Experimental studies of the electronic structure of excess electrons in liquids-archetypal quantum solutes-have been largely restricted to very dilute electron concentrations. We overcame this limitation by applying soft x-ray photoelectron spectroscopy to characterize excess electrons originating from steadily increasing amounts of alkali metals dissolved in refrigerated liquid ammonia microjets. As concentration rises, a narrow peak at ~2 electron volts, corresponding to vertical photodetachment of localized solvated electrons and dielectrons, transforms continuously into a band with a sharp Fermi edge accompanied by a plasmon peak, characteristic of delocalized metallic electrons. Through our experimental approach combined with ab initio calculations of localized electrons and dielectrons, we obtain a clear picture of the energetics and density of states of the ammoniated electrons over the gradual transition from dilute blue electrolytes to concentrated bronze metallic solutions.
Charles University Faculty of Mathematics and Physics Ke Karlovu 3 121 16 Prague 2 Czech Republic
Département de Chimie École Normale Supérieure PSL University 75005 Paris France
Department of Chemistry Humboldt Universität zu Berlin Brook Taylor Str 2 D 12489 Berlin Germany
Department of Chemistry University of Southern California Los Angeles CA 90089 0482 USA
Citace poskytuje Crossref.org
Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction
Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia