Synthesis of the Hydroxamate Siderophore Nα-Methylcoprogen B in Scedosporium apiospermum Is Mediated by sidD Ortholog and Is Required for Virulence
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33194829
PubMed Central
PMC7655970
DOI
10.3389/fcimb.2020.587909
Knihovny.cz E-zdroje
- Klíčová slova
- Nα-methyl coprogen B, Scedosporium, cystic fibrosis, extracellular siderophore, iron uptake, virulence factor, xenosiderophores,
- MeSH
- invazivní mykotické infekce * MeSH
- lidé MeSH
- myši MeSH
- Scedosporium * genetika MeSH
- siderofory MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- siderofory MeSH
Scedosporium species rank second among the filamentous fungi capable to colonize chronically the respiratory tract of patients with cystic fibrosis (CF). Nevertheless, there is little information on the mechanisms underpinning their virulence. Iron acquisition is critical for the growth and pathogenesis of many bacterial and fungal genera that chronically inhabit the CF lungs. In a previous study, we showed the presence in the genome of Scedosporium apiospermum of several genes relevant for iron uptake, notably SAPIO_CDS2806, an ortholog of sidD, which drives the synthesis of the extracellular hydroxamate-type siderophore fusarinine C (FsC) and its derivative triacetylfusarinine C (TAFC) in Aspergillus fumigatus. Here, we demonstrate that Scedosporium apiospermum sidD gene is required for production of an excreted siderophore, namely, Nα-methylcoprogen B, which also belongs to the hydroxamate family. Blockage of the synthesis of Nα-methylcoprogen B by disruption of the sidD gene resulted in the lack of fungal growth under iron limiting conditions. Still, growth of ΔsidD mutants could be restored by supplementation of the culture medium with a culture filtrate from the parent strain, but not from the mutants. Furthermore, the use of xenosiderophores as the sole source of iron revealed that S. apiospermum can acquire the iron using the hydroxamate siderophores ferrichrome or ferrioxamine, i.e., independently of Nα-methylcoprogen B production. Conversely, Nα-methylcoprogen B is mandatory for iron acquisition from pyoverdine, a mixed catecholate-hydroxamate siderophore. Finally, the deletion of sidD resulted in the loss of virulence in a murine model of scedosporiosis. Our findings demonstrate that S. apiospermum sidD gene drives the synthesis of a unique extracellular, hydroxamate-type iron chelator, which is essential for fungal growth and virulence. This compound scavenges iron from pyoverdine, which might explain why S. apiospermum and Pseudomonas aeruginosa are rarely found simultaneously in the CF lungs.
Institute of Microbiology of the Czech Academy of Sciences Prague Czechia
Laboratoire de Parasitologie Mycologie Centre Hospitalier Universitaire Angers France
Laboratoire de Parasitologie Mycologie Centre Hospitalier Universitaire Brest France
Zobrazit více v PubMed
Antelo L., Hof C., Welzel K., Eisfeld K., Sterner O., Anke H. (2006). Siderophores produced by PubMed DOI
Bertrand S., Larcher G., Landreau A., Richomme P., Duval O., Bouchara J.-P. (2009). Hydroxamate siderophores of PubMed DOI
Bertrand S., Bouchara J.-P., Venier M.-C., Richomme P., Duval O., Larcher G. (2010). N(α)-methyl coprogen B, a potential marker of the airway colonization by PubMed DOI
Birch L. E., Ruddat M. (2005). Siderophore accumulation and phytopathogenicity in PubMed DOI
Blyth C. C., Middleton P. G., Harun A., Sorrell T. C., Meyer W., Chen S. C.-A. (2010). Clinical associations and prevalence of PubMed DOI
Caza M., Kronstad J. W. (2013). Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol. 3:80 10.3389/fcimb.2013.00080 PubMed DOI PMC
Chen S. C.-A., Patel S., Meyer W., Chapman B., Yu H., Byth K., et al. (2018). PubMed DOI
Choquer M., Robin G., Le Pêcheur P., Giraud C., Levis C., Viaud M. (2008). Ku70 or Ku80 deficiencies in the fungus PubMed DOI
Donzelli B. G. G., Krasnoff S. B. (2016). “Chapter Ten - Molecular Genetics of Secondary Chemistry in Metarhizium Fungi,” in Advances in Genetics Genetics and Molecular Biology of Entomopathogenic Fungi. Eds. Lovett B, St. Leger R. J. (Cambridge, MA: Academic Press; ), 365–436. 10.1016/bs.adgen.2016.01.005 PubMed DOI
Eichhorn H., Lessing F., Winterberg B., Schirawski J., Kämper J., Müller P., et al. (2006). A ferroxidation/permeation iron uptake system is required for virulence in PubMed DOI PMC
Gandía M., Xu S., Font C., Marcos J. F. (2016). Disruption of PubMed DOI
Gangneux J.-P., Lortholary O., Cornely O. A., Pagano L. (2019). 9th Trends in Medical Mycology held on 11–14 October 2019, Nice, France, organized under the auspices of EORTC-IDG and ECMM. J. Fungi 5, 95. 10.3390/jof5040095 PubMed DOI PMC
Haas H. (2014). Fungal siderophore metabolism with a focus on PubMed DOI PMC
Hissen A. H. T., Chow J. M. T., Pinto L. J., Moore M. M. (2004). Survival of PubMed DOI PMC
Hoff B., Kamerewerd J., Sigl C., Zadra I., Kück U. (2010). Homologous recombination in the antibiotic producer PubMed DOI
Homa M., Sándor A., Tóth E., Szebenyi C., Nagy G., Vágvölgyi C., et al. (2019). In vitro interactions of PubMed DOI PMC
Kaur J., Pethani B. P., Kumar S., Kim M., Sunna A., Kautto L., et al. (2015). PubMed DOI PMC
Krappmann S. (2007). Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol. Rev. 21, 25–29. 10.1016/j.fbr.2007.02.004 DOI
Le Govic Y., Papon N., Le Gal S., Lelièvre B., Bouchara J.-P., Vandeputte P. (2018). Genomic organization and expression of iron metabolism genes in the emerging pathogenic mold PubMed DOI PMC
Le Govic Y., Papon N., Le Gal S., Bouchara J.-P., Vandeputte P. (2019). Non-ribosomal peptide synthetase gene clusters in the human pathogenic fungus PubMed DOI PMC
Li Z.-H., Du C.-M., Zhong Y.-H., Wang T.-H. (2010). Development of a highly efficient gene targeting system allowing rapid genetic manipulations in PubMed DOI
Liu Z., Friesen T. L. (2012). Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol. Biol. 835, 365–375. 10.1007/978-1-61779-501-5_21 PubMed DOI
Mei B., Budde A. D., Leong S. A. (1993). PubMed DOI PMC
Meyer V. (2008). Genetic engineering of filamentous fungi–progress, obstacles and future trends. Biotechnol. Adv. 26, 177–185. 10.1016/j.biotechadv.2007.12.001 PubMed DOI
Nayak T., Szewczyk E., Oakley C. E., Osmani A., Ukil L., Murray S. L., et al. (2006). A versatile and efficient gene-targeting system for PubMed DOI PMC
Ninomiya Y., Suzuki K., Ishii C., Inoue H. (2004). Highly efficient gene replacements in PubMed DOI PMC
Novák J., Škríba A., Havlíček V. (2020). CycloBranch 2: molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal. Chem. 92, 6844–6849. 10.1021/acs.analchem.0c00170 PubMed DOI
Oide S., Moeder W., Krasnoff S., Gibson D., Haas H., Yoshioka K., et al. (2006). NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18, 2836–2853. 10.1105/tpc.106.045633 PubMed DOI PMC
Pateau V., Razafimandimby B., Vandeputte P., Thornton C. R., Guillemette T., Bouchara J.-P., et al. (2018). Gene disruption in PubMed DOI
Pluháček T., Lemr K., Ghosh D., Milde D., Novák J., Havlíček V. (2016). Characterization of microbial siderophores by mass spectrometry. Mass Spectrom. Rev. 35, 35–47. 10.1002/mas.21461 PubMed DOI
Qi X., Su X., Guo H., Qi J., Cheng H. (2015). A PubMed DOI
Ramanan N., Wang Y. (2000). A high-affinity iron permease essential for PubMed DOI
Ramirez-Garcia A., Pellon A., Rementeria A., Buldain I., Barreto-Bergter E., Rollin-Pinheiro R., et al. (2018). PubMed DOI
Sass G., Nazik H., Penner J., Shah H., Ansari S. R., Clemons K. V., et al. (2018). Studies of PubMed DOI PMC
Sass G., Ansari S. R., Dietl A.-M., Déziel E., Haas H., Stevens D. A. (2019). Intermicrobial interaction: PubMed DOI PMC
Schrettl M., Bignell E., Kragl C., Joechl C., Rogers T., Arst H. N., et al. (2004). Siderophore biosynthesis but not reductive iron assimilation is essential for PubMed DOI PMC
Schrettl M., Bignell E., Kragl C., Sabiha Y., Loss O., Eisendle M., et al. (2007). Distinct roles for intra- and extracellular siderophores during PubMed DOI PMC
Schwarz C., Brandt C., Antweiler E., Krannich A., Staab D., Schmitt-Grohé S., et al. (2017). Prospective multicenter German study on pulmonary colonization with PubMed DOI PMC
Turgeon B. G., Condon B., Liu J., Zhang N. (2010). Protoplast transformation of filamentous fungi. Methods Mol. Biol. 638, 3–19. 10.1007/978-1-60761-611-5_1 PubMed DOI
Waldron K. J., Robinson N. J. (2009). How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35. 10.1038/nrmicro2057 PubMed DOI
Winkelmann G. (2007). Ecology of siderophores with special reference to the fungi. Biometals 20, 379–392. 10.1007/s10534-006-9076-1 PubMed DOI
Yasmin S., Alcazar-Fuoli L., Gründlinger M., Puempel T., Cairns T., Blatzer M., et al. (2012). Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen PubMed DOI PMC
Current and Future Pathways in Aspergillus Diagnosis