Exploring the Siderophore Portfolio for Mass Spectrometry-Based Diagnosis of Scedosporiosis and Lomentosporiosis

. 2024 Nov 05 ; 9 (44) : 44815-44824. [epub] 20241023

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39524635

Scedosporium apiospermum and Lomentospora prolificans secrete siderophores (iron scavengers) during hyphal proliferation. Siderophores are virulence factors and potential clinical biomarkers of invasive scedosporiosis and lomentosporiosis. Both strains secreted a uniform spectrum of siderophores, including coprogen B (CopB), N α-methyl-coprogen B, dimethyl-coprogen, and ferricrocin, with N α-methyl-coprogen B being the fastest secreted and most abundant coprogen. Under iron and zinc restriction, reflecting a nutrient-limited host environment, L. prolificans secreted 45 times more CopB than did S. apiospermum, presumably contributing to its higher virulence. This robust mobilization of CopB was further enhanced by zinc surplus. Additionally, two novel cyclic peptides, Scedocyclin A and B, were characterized inScedosporium boydii using the de novo sequencing tool CycloBranch. Utilizing matrix-assisted laser desorption/ionization, the portfolio of coprogens detected had limits of detection and quantitation of 4.9 and 14.6 fmol/spot in complex matrices, respectively, making them strong candidates for the next-generation, routine diagnosis of invasive scedosporiosis and lomentosporiosis through the Biotyper siderotyping.

Zobrazit více v PubMed

WHO fungal priority pathogens list to guide research, development and public health action. https://www.who.int/publications/i/item/9789240060241 (accessed Dec 9 , 2023).

Hoenigl M.; Salmanton-Garcia J.; Walsh T. J.; Nucci M.; Neoh C. F.; Jenks J. D.; Lackner M.; Sprute R.; Al-Hatmi A. M. S.; Bassetti M.; Carlesse F.; Freiberger T.; Koehler P.; Lehrnbecher T.; Kumar A.; Prattes J.; Richardson M.; Revankar S.; Slavin M. A.; Stemler J.; Spiess B.; Taj-Aldeen S. J.; Warris A.; Woo P. C. Y.; Young J. A. H.; Albus K.; Arenz D.; Arsic-Arsenijevic V.; Bouchara J. P.; Chinniah T. R.; Chowdhary A.; de Hoog G. S.; Dimopoulos G.; Duarte R. F.; Hamal P.; Meis J. F.; Mfinanga S.; Queiroz-Telles F.; Patterson T. F.; Rahav G.; Rogers T. R.; Rotstein C.; Wahyuningsih R.; Seidel D.; Cornely O. A. Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect. Dis. 2021, 21 (8), e246–e257. 10.1016/S1473-3099(20)30784-2. PubMed DOI

Ramirez-Garcia A.; Pellon A.; Rementeria A.; Buldain I.; Barreto-Bergter E.; Rollin-Pinheiro R.; de Meirelles J. V.; Xisto M.; Ranque S.; Havlicek V.; Vandeputte P.; Govic Y. L.; Bouchara J. P.; Giraud S.; Chen S.; Rainer J.; Alastruey-Izquierdo A.; Martin-Gomez M. T.; Lopez-Soria L. M.; Peman J.; Schwarz C.; Bernhardt A.; Tintelnot K.; Capilla J.; Martin-Vicente A.; Cano-Lira J.; Nagl M.; Lackner M.; Irinyi L.; Meyer W.; de Hoog S.; Hernando F. L. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med. Mycol. 2018, 56, 102–125. 10.1093/mmy/myx113. PubMed DOI

Mello T. P.; Oliveira S. S. C.; Branquinha M. H.; Santos A. L. S. Decoding the antifungal resistance mechanisms in biofilms of emerging, ubiquitous and multidrug-resistant species belonging to the Scedosporium/Lomentospora genera. Med. Mycol. 2022, 60 (6), myac036.10.1093/mmy/myac036. PubMed DOI

Guegan H.; Poirier W.; Ravenel K.; Dion S.; Delabarre A.; Desvillechabrol D.; Pinson X.; Sergent O.; Gallais I.; Gangneux J. P.; Giraud S.; Gastebois A. Deciphering the role of PIG1 and DHN-melanin in Scedosporium apiospermum conidia. J. Fungi 2023, 9 (2), 134.10.3390/jof9020134. PubMed DOI PMC

Mello T. P.; Bittencourt V. C. B.; Liporagi-Lopes L. C.; Aor A. C.; Branquinha M. H.; Santos A. L. S. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. Fungal Bio. Rev. 2019, 33 (1), 16–46. 10.1016/j.fbr.2018.07.002. DOI

Toth E. J.; Nagy G. R.; Homa M.; Abrok M.; Kiss I. E.; Nagy G.; Bata-Csorgo Z.; Kemeny L.; Urban E.; Vagvolgyi C.; Papp T. Recurrent Scedosporium apiospermum mycetoma successfully treated by surgical excision and terbinafine treatment: a case report and review of the literature. Ann. Clin. Microbiol. Antimicrob. 2017, 16 (1), 31.10.1186/s12941-017-0195-z. PubMed DOI PMC

Schwarz C.; Brandt C.; Antweiler E.; Krannich A.; Staab D.; Schmitt-Grohe S.; Fischer R.; Hartl D.; Thronicke A.; Tintelnot K. Prospective multicenter German study on pulmonary colonization with Scedosporium/Lomentospora species in cystic fibrosis: epidemiology and new association factors. PLoS One 2017, 12 (2), e017148510.1371/journal.pone.0171485. PubMed DOI PMC

Seidel D.; Meissner A.; Lackner M.; Piepenbrock E.; Salmanton-Garcia J.; Stecher M.; Mellinghoff S.; Hamprecht A.; Duran Graeff L.; Kohler P.; Cheng M. P.; Denis J.; Chedotal I.; Chander J.; Pakstis D. L.; Los-Arcos I.; Slavin M.; Montagna M. T.; Caggiano G.; Mares M.; Trauth J.; Aurbach U.; Vehreschild M.; Vehreschild J. J.; Duarte R. F.; Herbrecht R.; Wisplinghoff H.; Cornely O. A. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope. Crit. Rev. Microbiol. 2019, 45 (1), 1–21. 10.1080/1040841X.2018.1514366. PubMed DOI

Sedlacek L.; Graf B.; Schwarz C.; Albert F.; Peter S.; Wurstl B.; Wagner S.; Klotz M.; Becker A.; Haase G.; Laniado G.; Kahl B.; Suerbaum S.; Seibold M.; Tintelnot K. Prevalence of Scedosporium species and Lomentospora prolificans in patients with cystic fibrosis in a multicenter trial by use of a selective medium. J. Cyst. Fibros. 2015, 14 (2), 237–241. 10.1016/j.jcf.2014.12.014. PubMed DOI

Pham T.; Giraud S.; Schuliar G.; Rougeron A.; Bouchara J. P. Scedo-Select III: a new semi-selective culture medium for detection of the Scedosporium apiospermum species complex. Med. Mycol. 2015, 53 (5), 512–519. 10.1093/mmy/myv015. PubMed DOI

Gilgado F.; Cano J.; Gené J.; Guarro J. Molecular phylogeny of the Pseudallescheria boydii species complex: proposal of two new species. J. Clin. Microbiol. 2005, 43 (10), 4930–4942. 10.1128/JCM.43.10.4930-4942.2005. PubMed DOI PMC

Mina S.; Staerck C.; Marot A.; Godon C.; Calenda A.; Bouchara J. P.; Fleury M. J. J. Scedosporium boydii CatA1 and SODC recombinant proteins, new tools for serodiagnosis of Scedosporium infection of patients with cystic fibrosis. Diagn. Microbiol. Infect. Dis. 2017, 89 (4), 282–287. 10.1016/j.diagmicrobio.2017.08.013. PubMed DOI

Martin-Souto L.; Buldain I.; Areitio M.; Aparicio-Fernandez L.; Antoran A.; Bouchara J. P.; Martin-Gomez M. T.; Rementeria A.; Hernando F. L.; Ramirez-Garcia A. ELISA test for the serological detection of Scedosporium/Lomentospora in cystic fibrosis patients. Front. Cell. Infect. Microbiol. 2020, 10, 602089.10.3389/fcimb.2020.602089. PubMed DOI PMC

Pini P.; Venturelli C.; Girardis M.; Forghieri F.; Blasi E. Prognostic potential of the panfungal marker (1 → 3)-β-D-glucan in invasive mycoses patients. Mycopathologia 2019, 184 (1), 147–150. 10.1007/s11046-018-0282-5. PubMed DOI

Keller N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 2019, 17 (3), 167–180. 10.1038/s41579-018-0121-1. PubMed DOI PMC

Macheleidt J.; Mattern D. J.; Fischer J.; Netzker T.; Weber J.; Schroeckh V.; Valiante V.; Brakhage A. A. Regulation and role of fungal secondary metabolites. Annu. Rev. Genet. 2016, 50, 371–392. 10.1146/annurev-genet-120215-035203. PubMed DOI

Kriegl L.; Havlicek V.; Dichtl K.; Egger M.; Hoenigl M. Siderophores: a potential role as a diagnostic for invasive fungal disease. Curr. Opin. Infect. Dis. 2022, 35 (6), 485–492. 10.1097/QCO.0000000000000862. PubMed DOI

Happacher I.; Aguiar M.; Yap A.; Decristoforo C.; Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem. 2023, 67 (5), 829–842. 10.1042/EBC20220252. PubMed DOI PMC

Luptakova D.; Patil R. H.; Dobias R.; Stevens D. A.; Pluhacek T.; Palyzova A.; Kanova M.; Navratil M.; Vrba Z.; Hubacek P.; Havlicek V. Siderophore-based noninvasive differentiation of Aspergillus fumigatus colonization and invasion in pulmonary aspergillosis. Microbiol. Spectr. 2023, 11 (2), e040682210.1128/spectrum.04068-22. PubMed DOI PMC

Patil R. H.; Luptakova D.; Havlicek V. Infection metallomics for critical care in the post-COVID era. Mass Spectrom. Rev. 2023, 42 (4), 1221–1243. 10.1002/mas.21755. PubMed DOI

Bertrand S.; Larcher G.; Landreau A.; Richomme P.; Duval O.; Bouchara J. P. Hydroxamate siderophores of Scedosporium apiospermum. BioMetals 2009, 22 (6), 1019–1029. 10.1007/s10534-009-9253-0. PubMed DOI

Bertrand S.; Bouchara J. P.; Venier M. C.; Richomme P.; Duval O.; Larcher G. Nα-methyl coprogen B, a potential marker of the airway colonization by Scedosporium apiospermum in patients with cystic fibrosis. Med. Mycol. 2010, 48 (O1), S98–S107. 10.3109/13693786.2010.503972. PubMed DOI

Bairwa G.; Hee Jung W.; Kronstad J. W. Iron acquisition in fungal pathogens of humans. Metallomics 2017, 9 (3), 215–227. 10.1039/C6MT00301J. PubMed DOI PMC

Le Govic Y.; Papon N.; Le Gal S.; Lelievre B.; Bouchara J. P.; Vandeputte P. Genomic organization and expression of iron metabolism genes in the emerging pathogenic mold Scedosporium apiospermum. Front. Microbiol. 2018, 9, 827.10.3389/fmicb.2018.00827. PubMed DOI PMC

Le Govic Y.; Papon N.; Le Gal S.; Bouchara J. P.; Vandeputte P. Non-ribosomal peptide synthetase gene clusters in the human pathogenic fungus Scedosporium apiospermum. Front. Microbiol. 2019, 10, 2062.10.3389/fmicb.2019.02062. PubMed DOI PMC

Le Govic Y.; Havlicek V.; Capilla J.; Luptakova D.; Dumas D.; Papon N.; Le Gal S.; Bouchara J. P.; Vandeputte P. Synthesis of the hydroxamate siderophore Nα-methylcoprogen B in Scedosporium apiospermum is mediated by sidD ortholog and is required for virulence. Front. Cell. Infect. Microbiol. 2020, 10, 587909.10.3389/fcimb.2020.587909. PubMed DOI PMC

Luo R.; Zimin A.; Workman R.; Fan Y.; Pertea G.; Grossman N.; Wear M. P.; Jia B.; Miller H.; Casadevall A.; Timp W.; Zhang S. X.; Salzberg S. L. First draft genome sequence of the pathogenic fungus Lomentospora prolificans (formerly Scedosporium prolificans). G3 (Bethesda) 2017, 7 (11), 3831–3836. 10.1534/g3.117.300107. PubMed DOI PMC

Misslinger M.; Hortschansky P.; Brakhage A. A.; Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim. Biophys. Acta, Mol. Cell Res. 2021, 1868 (1), 118885.10.1016/j.bbamcr.2020.118885. PubMed DOI

Liu H.; Gravelat F. N.; Chiang L. Y.; Chen D.; Vanier G.; Ejzykowicz D. E.; Ibrahim A. S.; Nierman W. C.; Sheppard D. C.; Filler S. G. Aspergillus fumigatus AcuM regulates both iron acquisition and gluconeogenesis. Mol. Microbiol. 2010, 78 (4), 1038–1054. 10.1111/j.1365-2958.2010.07389.x. PubMed DOI PMC

Yap A.; Volz R.; Paul S.; Moye-Rowley W. S.; Haas H. Regulation of high-affinity iron acquisition, including acquisition mediated by the iron permease FtrA, is coordinated by AtrR, SrbA, and SreA in Aspergillus fumigatus. mBio 2023, 14 (3), e007572310.1128/mbio.00757-23. PubMed DOI PMC

Pavlaskova K.; Nedved J.; Kuzma M.; Zabka M.; Sulc M.; Sklenar J.; Novak P.; Benada O.; Kofronova O.; Hajduch M.; Derrick P. J.; Lemr K.; Jegorov A.; Havlicek V. Characterization of pseudacyclins A–E, a suite of cyclic peptides produced by Pseudallescheria boydii. J. Nat. Prod. 2010, 73 (6), 1027–1032. 10.1021/np900472c. PubMed DOI

Krasny L.; Strohalm M.; Bouchara J. P.; Sulc M.; Lemr K.; Barreto-Bergter E.; Havlicek V. Scedosporium and Pseudallescheria low molecular weight metabolites revealed by database search. Mycoses 2011, 54 (s3), 37–42. 10.1111/j.1439-0507.2011.02109.x. PubMed DOI

Novak J.; Lemr K.; Schug K. A.; Havlicek V. CycloBranch: de novo sequencing of nonribosomal peptides from accurate product ion mass spectra. J. Am. Soc. Mass Spectrom. 2015, 26 (10), 1780–1786. 10.1007/s13361-015-1211-1. PubMed DOI

Novak J.; Skriba A.; Havlicek V. CycloBranch 2: molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal. Chem. 2020, 92 (10), 6844–6849. 10.1021/acs.analchem.0c00170. PubMed DOI

Blin K.; Shaw S.; Augustijn H. E.; Reitz Z. L.; Biermann F.; Alanjary M.; Fetter A.; Terlouw B. R.; Metcalf W. W.; Helfrich E. J. N.; van Wezel G. P.; Medema M. H.; Weber T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51 (W1), W46–W50. 10.1093/nar/gkad344. PubMed DOI PMC

Haas H. Iron—a key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 2012, 3, 28.10.3389/fmicb.2012.00028. PubMed DOI PMC

Altschul S. F.; Wootton J. C.; Gertz E. M.; Agarwala R.; Morgulis A.; Schaffer A. A.; Yu Y. K. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 2005, 272 (20), 5101–5109. 10.1111/j.1742-4658.2005.04945.x. PubMed DOI PMC

Haas H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol. 2003, 62 (4), 316–330. 10.1007/s00253-003-1335-2. PubMed DOI

Breci L. A.; Tabb D. L.; Yates J. R. 3rd; Wysocki V. H. Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 2003, 75 (9), 1963–1971. 10.1021/ac026359i. PubMed DOI

Savelieff M. G.; Pappalardo L. Novel cutting-edge metabolite-based diagnostic tools for aspergillosis. PLoS Pathog. 2017, 13 (9), e100648610.1371/journal.ppat.1006486. PubMed DOI PMC

Kostrzewa M. Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Rev. Proteomics 2018, 15 (3), 193–202. 10.1080/14789450.2018.1438193. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...