A multifaceted strategy to improve recombinant expression and structural characterisation of a Trypanosoma invariant surface protein
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35882923
PubMed Central
PMC9325691
DOI
10.1038/s41598-022-16958-x
PII: 10.1038/s41598-022-16958-x
Knihovny.cz E-zdroje
- MeSH
- Escherichia coli genetika MeSH
- konformace proteinů MeSH
- membránové proteiny MeSH
- Trypanosoma * MeSH
- vodík-deuteriová výměna * metody MeSH
- vodík/deuteriová výměna a hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
Identification of a protein minimal fragment amenable to crystallisation can be time- and labour intensive especially if large amounts are required and the protein has a complex fold and functionally important post-translational modifications. In addition, a lack of homologues and structural information can further complicate the design of a minimal expression construct. Recombinant expression in E. coli promises high yields, low costs and fast turnover times, but falls short for many extracellular, eukaryotic proteins. Eukaryotic expression systems provide an alternative but are costly, slow and require special handling and equipment. Using a member of a structurally uncharacterized, eukaryotic receptor family as an example we employ hydrogen-deuterium exchange mass spectrometry (HDX-MS) guided construct design in conjunction with truncation scanning and targeted expression host switching to identify a minimal expression construct that can be produced with high yields and moderate costs.
Zobrazit více v PubMed
Pauling L, Corey RB, Branson HR. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 1951;37(4):205–211. doi: 10.1073/pnas.37.4.205. PubMed DOI PMC
Pauling L, Corey RB. Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc. Natl. Acad. Sci. U. S. A. 1951;37(11):729–740. doi: 10.1073/pnas.37.11.729. PubMed DOI PMC
Rost B. Review: protein secondary structure prediction continues to rise. J. Struct. Biol. 2001;134(2–3):204–218. doi: 10.1006/jsbi.2001.4336. PubMed DOI
Rost B, Sander C, Schneider R. Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 1994;235(1):13–26. doi: 10.1016/S0022-2836(05)80007-5. PubMed DOI
Yang Y, et al. Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief Bioinform. 2018;19(3):482–494. PubMed PMC
Senior AW, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–710. doi: 10.1038/s41586-019-1923-7. PubMed DOI
Ziegelbauer K, Overath P. Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J. Biol. Chem. 1992;267(15):10791–10796. doi: 10.1016/S0021-9258(19)50088-6. PubMed DOI
Koumandou VL, et al. Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes. Eukaryot. Cell. 2013;12(2):330–342. doi: 10.1128/EC.00273-12. PubMed DOI PMC
Leung KF, et al. Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes. Eukaryot. Cell. 2011;10(7):916–931. doi: 10.1128/EC.05012-11. PubMed DOI PMC
Zoltner M, et al. Modulation of the surface proteome through multiple ubiquitylation pathways in African trypanosomes. PLoS Pathog. 2015;11(10):e1005236. doi: 10.1371/journal.ppat.1005236. PubMed DOI PMC
Sullivan L, et al. Proteomic selection of immunodiagnostic antigens for human African trypanosomiasis and generation of a prototype lateral flow immunodiagnostic device. PLoS Negl. Trop. Dis. 2013;7(2):e2087. doi: 10.1371/journal.pntd.0002087. PubMed DOI PMC
Nzou SM, et al. Development of multiplex serological assay for the detection of human African trypanosomiasis. Parasitol. Int. 2016;65(2):121–127. doi: 10.1016/j.parint.2015.10.008. PubMed DOI
Umaer K, Bangs JD. Late ESCRT machinery mediates the recycling and rescue of invariant surface glycoprotein 65 in Trypanosoma brucei. Cell Microbiol. 2020;22(11):e13244. doi: 10.1111/cmi.13244. PubMed DOI PMC
Trevor CE, et al. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nat. Microbiol. 2019;4(12):2074–2081. doi: 10.1038/s41564-019-0589-0. PubMed DOI PMC
Higgins MK, et al. Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl. Acad. Sci. U. S. A. 2013;110(5):1905–1910. doi: 10.1073/pnas.1214943110. PubMed DOI PMC
Macleod OJS, et al. A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies. Nat. Commun. 2020;11(1):1326. doi: 10.1038/s41467-020-15125-y. PubMed DOI PMC
Freymann D, et al. 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J. Mol. Biol. 1990;216(1):141–60. doi: 10.1016/S0022-2836(05)80066-X. PubMed DOI
Lane-Serff H, et al. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor. Elife. 2014;3:e05553. doi: 10.7554/eLife.05553. PubMed DOI PMC
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999;292(2):195–202. doi: 10.1006/jmbi.1999.3091. PubMed DOI
Buchan DWA, Jones DT. The PSIPRED protein analysis workbench: 20 years on. Nucl. Acids Res. 2019;47(W1):W402–w407. doi: 10.1093/nar/gkz297. PubMed DOI PMC
Masson GR, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods. 2019;16(7):595–602. doi: 10.1038/s41592-019-0459-y. PubMed DOI PMC
Jin J, et al. Accelerating the clinical development of protein-based vaccines for malaria by efficient purification using a four amino acid C-terminal 'C-tag'. Int. J. Parasitol. 2017;47(7):435–446. doi: 10.1016/j.ijpara.2016.12.001. PubMed DOI PMC
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 2010;5(4):725–738. doi: 10.1038/nprot.2010.5. PubMed DOI PMC
Pleiner T, et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. Elife. 2015;4:e11349. doi: 10.7554/eLife.11349. PubMed DOI PMC
Zoll S, et al. The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat. Microbiol. 2018;3(3):295–301. doi: 10.1038/s41564-017-0085-3. PubMed DOI
Wheeler RJ. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS ONE. 2021;16(11):e0259871. doi: 10.1371/journal.pone.0259871. PubMed DOI PMC
Whitmore L, Wallace BA. Dichroweb: an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucl. Acids Res. 2004;32(Web Server issue):W668–W673. doi: 10.1093/nar/gkh371. PubMed DOI PMC
Kavan DMP. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302(1–3):53. doi: 10.1016/j.ijms.2010.07.030. DOI