Siderophores: a potential role as a diagnostic for invasive fungal disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu přehledy, časopisecké články, práce podpořená grantem
PubMed
35942851
DOI
10.1097/qco.0000000000000862
PII: 00001432-202212000-00002
Knihovny.cz E-zdroje
- MeSH
- Aspergillus fumigatus metabolismus MeSH
- aspergilóza * diagnóza mikrobiologie MeSH
- invazivní mykotické infekce * diagnóza MeSH
- lidé MeSH
- radioizotopy galia chemie metabolismus MeSH
- siderofory chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- Gallium-68 MeSH Prohlížeč
- N,N',N''-triacetylfusarinine C MeSH Prohlížeč
- radioizotopy galia MeSH
- siderofory MeSH
PURPOSE OF REVIEW: Invasive fungal diseases (IFDs) such as invasive aspergillosis continue to be associated with high morbidity and mortality while presenting significant diagnostic challenges. Siderophores are high-affinity Fe 3+ chelators produced by Aspergillus spp. and other fungi capable of causing IFD. Previously evaluated as a treatment target in mucormycosis, siderophores have recently emerged as new diagnostic targets for invasive aspergillosis and scedosporiosis. Here, we review the diagnostic potential of siderophores for diagnosing IFD, with a particular focus on invasive aspergillosis. RECENT FINDINGS: The major secreted siderophore of A. fumigatus , triacetylfusarinine C (TAFC), has been successfully detected by mass spectrometry in serum, BALF and urine of patients with invasive aspergillosis, with promising sensitivities and specificities in single-centre studies. Intracellular uptake of siderophores has also been utilized for imaging, wherein fungal siderophores have been conjugated with the easy-to-produce radioactive isotope gallium-68 ( 68 Ga) to visualize infected body sites in PET. For the Scedosporium apiospermum complex, another siderophore N(α)-methyl coprogen B has been shown promising as a marker for airway colonization in early studies. SUMMARY: Siderophores and particular TAFC have the potential to revolutionize diagnostic pathways for invasive aspergillosis and other mould infections. However, larger multicentre studies are needed to confirm these promising performances. Methods that allow rapid and cost-effective measurements in routine clinical practice need to be developed, particularly when TAFC is used as a biomarker in patient specimens.
Zobrazit více v PubMed
Cornely OA, Alastruey-Izquierdo A, Arenz D, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis 2019; 19:e405–e421.
Hoenigl M, Salmanton-García J, Walsh TJ, et al. Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect Dis 2021; 21:e246–e257.
Chen SC, Perfect J, Colombo AL, et al. Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect Dis 2021; 21:e375–e386.
Egger M, Hoenigl M, Thompson GR 3rd, et al. Let's talk about sex characteristics: as a risk factor for invasive fungal diseases. Mycoses 2022; 65:599–612.
Jenks JD, Seidel D, Cornely OA, et al. Voriconazole plus terbinafine combination antifungal therapy for invasive Lomentospora prolificans infections: analysis of 41 patients from the FungiScope® registry. Clin Microbiol Infect 2020; 26:784.e1–784.e5.
Bassetti M, Peghin M, Carnelutti A, et al. Clinical characteristics and predictors of mortality in cirrhotic patients with candidemia and intra-abdominal candidiasis: a multicenter study. Intensive Care Med 2017; 43:509–518.
Hoenigl M, Sprute R, Egger M, et al. The antifungal pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021; 81:1703–1729.
Hoenigl M, Sprute R, Arastehfar A, et al. Invasive candidiasis: investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin Investig Drugs 2022. 1–18. doi: 10.1080/13543784.2022.2086120. Epub ahead of print. DOI
Tejerina EE, Abril E, Padilla R, et al. Invasive aspergillosis in critically ill patients: an autopsy study. Mycoses 2019; 62:673–679.
Hoenigl M, Seidel D, Carvalho A, et al. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe 2022; 3:e543–e552.
Prattes J, Wauters J, Giacobbe DR, et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients: a multinational observational study by the European Confederation of Medical Mycology. Clin Microbiol Infect 2021; 28:580–587.
Autier B, Prattes J, White PL, et al. Aspergillus lateral flow assay with digital reader for the diagnosis of COVID-19-associated pulmonary aspergillosis (CAPA): a multicenter study. J Clin Microbiol 2022; 60:e0168921.
Prattes J, Wauters J, Giacobbe DR, et al. Diagnosis and treatment of COVID-19 associated pulmonary apergillosis in critically ill patients: results from a European confederation of medical mycology registry. Intensive Care Med 2021; 47:1158–1160.
Dellière S, Dudoignon E, Voicu S, et al. Combination of mycological criteria: a better surrogate to identify COVID-19 associated pulmonary aspergillosis patients and evaluate prognosis? J Clin Microbiol 2022; 60:e0216921.
Jenks JD, Nam HH, Hoenigl M. Invasive aspergillosis in critically ill patients: review of definitions and diagnostic approaches. Mycoses 2021; 64:1002–1014.
Arastehfar A, Carvalho A, van de Veerdonk FL, et al. COVID-19 associated pulmonary aspergillosis (CAPA): from immunology to treatment. J Fungi (Basel) 2020; 6:91.
Denning DW. Invasive aspergillosis. Clin Infect Dis 1998; 26:781–803. quiz 4-5.
Puerta-Alcalde P, Garcia-Vidal C. Changing epidemiology of invasive fungal disease in allogeneic hematopoietic stem cell transplantation. J Fungi (Basel) 2021; 7:848.
Eigl S, Hoenigl M, Spiess B, et al. Galactomannan testing and Aspergillus PCR in same-day bronchoalveolar lavage and blood samples for diagnosis of invasive aspergillosis. Med Mycol 2017; 55:528–534.
Jenks JD, Prattes J, Frank J, et al. Performance of the bronchoalveolar lavage fluid aspergillus galactomannan lateral flow assay with cube reader for diagnosis of invasive pulmonary aspergillosis: a multicenter cohort study. Clin Infect Dis 2021; 73:e1737–e1744.
de Heer K, Gerritsen MG, Visser CE, Leeflang MM. Galactomannan detection in broncho-alveolar lavage fluid for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev 2019; 5:Cd012399.
Heldt S, Prattes J, Eigl S, et al. Diagnosis of invasive aspergillosis in hematological malignancy patients: performance of cytokines, Asp LFD, and aspergillus PCR in same day blood and bronchoalveolar lavage samples. J Infect 2018; 77:235–241.
Egger M, Penziner S, Dichtl K, et al. Performance of the Euroimmun aspergillus antigen ELISA for the diagnosis of invasive pulmonary aspergillosis in bronchoalveolar lavage fluid. J Clin Microbiol 2022; 60:e0021522.
Egger M, Prüller F, Krause R, et al. Utility of serum 1,3-β-d-glucan testing for diagnosis and prognostication in COVID-19-associated pulmonary aspergillosis. Microbiol Spectr 2022; 10:e0137322.
Paiva JA, Pereira JM. Biomarkers of fungal lung infection. Curr Opin Infect Dis 2019; 32:136–142.
Danion F, Rouzaud C, Duréault A, et al. Why are so many cases of invasive aspergillosis missed? Med Mycol 2019; 57: (Suppl 2): S94–s103.
Kriegl L, Boyer J, Egger M, Hoenigl M. Antifungal stewardship in solid organ transplantation. Transpl Infect Dis 2022.
Jenks JD, Seidel D, Cornely OA, et al. Clinical characteristics and outcomes of invasive Lomentospora prolificans infections: analysis of patients in the FungiScope® registry. Mycoses 2020; 63:437–442.
Seidel D, Meissner A, Lackner M, et al. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope((R)). Crit Rev Microbiol 2019; 45:1–21.
Bertrand S, Larcher G, Landreau A, et al. Hydroxamate siderophores of Scedosporium apiospermum. Biometals 2009; 22:1019–1029.
Le Govic Y, Havlíček V, Capilla J, et al. Synthesis of the hydroxamate siderophore N (α)-methylcoprogen B in Scedosporium apiospermum is mediated by sidD ortholog and is required for virulence. Front Cell Infect Microbiol 2020; 10:587909.
Hoenigl M, Orasch T, Faserl K, et al. Triacetylfusarinine C: a urine biomarker for diagnosis of invasive aspergillosis. J Infect 2019; 78:150–157.
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim Biophys Acta Mol Cell Res 2021; 1868:118885.
Petrik M, Pfister J, Misslinger M, et al. Siderophore-based molecular imaging of fungal and bacterial infections: current status and future perspectives. J Fungi (Basel) 2020; 6:73.
Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe 2013; 13:509–519.
Pecoraro L, Wang X, Shah D, et al. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J Fungi (Basel) 2021; 8:21.
Haas H, Petrik M, Decristoforo C. An iron-mimicking Trojan horse-entering fungi: has the time come for molecular imaging of fungal infections? PLoS Pathogens 2015; 11:e1004568.
Orasch T, Prattes J, Faserl K, et al. Bronchoalveolar lavage triacetylfusarinine C (TAFC) determination for diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies. J Infect 2017; 75:370–373.
Petrik M, Haas H, Dobrozemsky G, et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med 2010; 51:639–645.
Thornton CR. Molecular imaging of invasive pulmonary aspergillosis using ImmunoPET/MRI: The future looks bright. Front Microbiol 2018; 9:691.
Misslinger M, Petrik M, Pfister J, et al. Desferrioxamine B-mediated pre-clinical in vivo imaging of infection by the mold fungus Aspergillus fumigatus. J Fungi (Basel) 2021; 7:734.
Skriba A, Pluhacek T, Palyzova A, et al. Early and noninvasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front Microbiol 2018; 9:2356.
Lu Y, Wang H, Wang Z, et al. Metabolic rewiring improves the production of the fungal active targeting molecule Fusarinine C. ACS Synth Biol 2019; 8:1755–1765.
Pfister J, Summer D, Petrik M, et al. Hybrid imaging of aspergillus fumigatus pulmonary infection with fluorescent, (68)Ga-labelled siderophores. Biomolecules 2020; 10:168.
Pfister J, Lichius A, Summer D, et al. Live-cell imaging with Aspergillus fumigatus-specific fluorescent siderophore conjugates. Sci Rep 2020; 10:15519.
Petrik M, Franssen GM, Haas H, et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging 2012; 39:1175–1183.
Petrik M, Haas H, Laverman P, et al. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol 2014; 16:102–108.
Pluhacek T, Petrik M, Luptakova D, et al. Aspergillus infection monitored by multimodal imaging in a rat model. Proteomics 2016; 16 (11–12):1785–1792.
Kaeopookum P, Summer D, Pfister J, et al. Modifying the siderophore triacetylfusarinine C for molecular imaging of fungal infection. Mol Imaging Biol 2019; 21:1097–1106.
Pfister J, Petrik M, Bendova K, et al. Antifungal siderophore conjugates for theranostic applications in invasive pulmonary aspergillosis using low-molecular TAFC scaffolds. J Fungi (Basel) 2021; 7:
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241–269.
Petrik M, Zhai C, Novy Z, et al. In vitro and in vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol Imaging Biol 2016; 18:344–352.
Petrik M, Haas H, Schrettl M, et al. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol 2012; 39:361–369.
Petrik M, Vlckova A, Novy Z, et al. Selected (6)(8)Ga-siderophores versus (6)(8)Ga-colloid and (6)(8)Ga-citrate: biodistribution and small animal imaging in mice. Biomed Pap Med 2015; 159:60–66.
Bellotti D, Remelli M. Deferoxamine B: a natural, excellent and versatile metal chelator. Molecules 2021; 26:3255.
Behnsen J, Zhi H, Aron AT, et al. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat Commun 2021; 12:7016.
Raffa N, Won TH, Sukowaty A, et al. Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proc Natl Acad Sci U S A 2021; 118:e2015224118.
Murray PJ. Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 2016; 17:132–139.
Holden VI, Breen P, Houle S, et al. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio 2016; 7:5.
Patil RH, Kotta-Loizou I, Palyzová A, et al. Freeing Aspergillus fumigatus of polymycovirus infection renders it more resistant to competition with Pseudomonas aeruginosa due to altered iron-acquiring tactics. J Fungi 2021; 7:497.
Elpek GO. Orosomucoid in liver diseases. World J Gastroenterol 2021; 27:7739–7747.
Luo Z, Lei H, Sun Y, et al. Orosomucoid an acute response protein with multiple modulating activities. J Physiol Biochem 2015; 71:329–340.
Rutuja HP, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. Mass Spect Rev 2021, Early view. Still epub. DOI doi: 10.1002/mas.21755.
Novák J, Škríba A, Havlíček V. CycloBranch 2: molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal Chem 2020; 92:6844–6849.
Dobiáš R, Škríba A, Pluháček T, et al. Noninvasive combined diagnosis and monitoring of aspergillus and Pseudomonas infections: proof of concept. J Fungi 2021; 7:730.
Pluháček T, Škríba A, Novák J, et al . Analysis of microbial siderophores by mass spectrometry. In: , editor. Metabolomics: methods and protocols. Methods Mol Biol 1996; 2019: 131-153.
Houšttʼ J, Spížek J, Havlíček V. Antifungal drugs. Metabolites 2020; 10:106.
Jayapalan S, Prabahar A, Arumugam S. Dhusia K, Raja K, Ramteke P. Association of fungal siderophores in human diseases: roles and treatments. Fungal siderophores: from mineral—microbe interactions to anti-pathogenicity. Cham: Springer International Publishing; 2021. 33–49.
Luptakova D, Pluhacek T, Petrik M, et al. Noninvasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci Rep 2017; 7:16523.
Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 2014; 31:1266–1276.
Ribeiro HA, Vieira LS, Scindia Y, et al. Multiscale mechanistic modelling of the host defence in invasive aspergillosis reveals leucocyte activation and iron acquisition as drivers of infection outcome. J R Soc Interface 2022; 19:20210806.
Pahlow S, Orasch T, Zukovskaja O, et al. Rapid detection of the aspergillosis biomarker triacetylfusarinine C using interference-enhanced Raman spectroscopy. Anal Bioanal Chem 2020; 412:6351–6360.
Moloney NM, Larkin A, Xu L, et al. Generation and characterisation of a semi-synthetic siderophore-immunogen conjugate and a derivative recombinant triacetylfusarinine C-specific monoclonal antibody with fungal diagnostic application. Anal Biochem 2021; 632:114384.
Carroll CS, Amankwa LN, Pinto LJ, et al. Correction: detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive aspergillosis. PLoS One 2016; 11:e0155451.
Carroll CS, Amankwa LN, Pinto LJ, et al. Detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive aspergillosis. PLoS One 2016; 11:e0151260.
Ullmann A, Aguado JM, Arikan S, et al. Executive summary of the 2017 ESCMID-ECMM guideline for the diagnosis and management of aspergillus disease. Clin Microb Infect 2019; 24 Suppl 1:e1–e38.
Peek ME, Bhatnagar A, McCarty NA, Zughaier SM. Pyoverdine, the major siderophore in Pseudomonas aeruginosa, Evades NGAL recognition. Interdiscip Perspect Infect Dis 2012; 2012:843509.
Gi M, Lee KM, Kim SC, et al. A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus. Sci Rep 2015; 5:14644.
Bertrand S, Bouchara JP, Venier MC, et al. N(α)-methyl coprogen B, a potential marker of the airway colonization by Scedosporium apiospermum in patients with cystic fibrosis. Med Mycol 2010; 48: (Suppl 1): S98–107.
Current and Future Pathways in Aspergillus Diagnosis
Diagnosis of Aspergillosis in Horses