Detection of Siderophores as a Superior Noninvasive Diagnostic Tool in Unraveling Mixed Fungal Infections

. 2025 Jun 03 ; 10 (21) : 21908-21914. [epub] 20250521

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40488006

Advances in the early diagnosis of systemic mycoses are urgently needed, given the morbidity and mortality of such infections and the correlation between delays in treatment and poor outcomes. We demonstrated the prospective application of liquid chromatography-mass spectrometry in the diagnosis of a mixed fungal infection. In this study, we compared the performance of chest radiography, galactomannan (sGM), and beta-d-glucan (sBDG) serology with a novel diagnostic method based on creatinine-indexed microbial siderophores in urine. A woman with angioblastic T-cell lymphoma presented with neutropenia following allogeneic transplantation. sGM and sBDG remained positive throughout the 28-day intensive care unit stay. A. fumigatus DNA was detected in the induced sputum samples on sampling days 0 and 18. On day 18, a CT scan showed a typical nest sign, and R. microsporus DNA was detected in sputum. The patient was discharged from the hospital on day 28 and expired 7 days later. With our novel strategy based on mass spectrometry, A. fumigatus was consistently detected in the urine from day 0 to the end of the stay by the detection of triacetylfusarinine C (uTafC), an A. fumigatus-specific hydroxamate siderophore. An additional invasive R. microsporus infection was revealed by the detection of a mucoromycete-specific carboxylate siderophore in urine, rhizoferrin (uRhf), from day seven onward. Both creatinine-normalized siderophore indices (uTafC/Cr, uRhf/Cr) were sensitive to antifungal therapy and correlated with fast relapses of the invasive disease in time. This study illustrates how such an early and specific new approach can unravel the complexities of dual fungal infections.

Zobrazit více v PubMed

Casalini G., Giacomelli A., Antinori S.. The WHO fungal priority pathogens list: A crucial reappraisal to review the prioritisation. Lancet Microbe. 2024;5(7):717–724. doi: 10.1016/S2666-5247(24)00042-9. PubMed DOI

Seyedjavadi S. S., Bagheri P., Nasiri M. J., Razzaghi-Abyaneh M., Goudarzi M.. Fungal infection in co-infected patients with COVID-19: An overview of case reports/case series and systematic review. Front. Microbiol. 2022;13:888452. doi: 10.3389/fmicb.2022.888452. PubMed DOI PMC

Sasani E., Pakdel F., Khodavaisy S., Salehi M., Salami A., Sohrabi M., Aminishakiba P., Amirafzali I., Khaneshan A. S.. Mixed aspergillosis and mucormycosis infections in patients with COVID-19: Case series and literature review. Mycopathologia. 2024;189(1):10. doi: 10.1007/s11046-023-00808-z. PubMed DOI

Millon L., Caillot D., Berceanu A., Bretagne S., Lanternier F., Morio F., Letscher-Bru V., Dalle F., Denis B., Alanio A., Boutoille D., Bougnoux M. E., Botterel F., Chouaki T., Charbonnier A., Ader F., Dupont D., Bellanger A. P., Rocchi S., Scherer E., Gbaguidi-Haore H., Herbrecht R.. Evaluation of serum mucorales polymerase chain reaction for the diagnosis of mucormycoses: The MODIMUCOR prospective trial. Clin. Infect. Dis. 2022;75(5):777–785. doi: 10.1093/cid/ciab1066. PubMed DOI

Barchiesi F., Santinelli A., Biscotti T., Greganti G., Giannini D., Manso E.. Delay of antifungal therapy influences the outcome of invasive aspergillosis in experimental models of infection. J. Antimicrob. Chemother. 2016;71(8):2230–2233. doi: 10.1093/jac/dkw111. PubMed DOI

Moreno A., Mah J., Budvytiene I., Ho D. Y., Schwenk H. T., Banaei N.. Dynamics and prognostic value of plasma cell-free DNA PCR in patients with invasive aspergillosis and mucormycosis. J. Clin. Microbiol. 2024;62(5):e0039424. doi: 10.1128/jcm.00394-24. PubMed DOI PMC

Kriegl L., Havlíček V., Dichtl K., Egger M., Hoenigl M.. Siderophores: A potential role as a diagnostic for invasive fungal disease. Curr. Opin. Infect. Dis. 2022;35(6):485–492. doi: 10.1097/QCO.0000000000000862. PubMed DOI

Luptáková D., Patil R. H., Dobiáš R., Stevens D. A., Pluháček T., Palyzová A., Káňová M., Navrátil M., Vrba Z., Hubáček P., Havlíček V.. Siderophore-based noninvasive differentiation of Aspergillus fumigatus colonization and invasion in pulmonary aspergillosis. Microbiol. Spect. 2023;11(2):e0406822. doi: 10.1128/spectrum.04068-22. PubMed DOI PMC

Havlíček, V. ; Dobiáš, R. ; Luptáková, D. ; Patil, R. H. ; Houšt́, J. ; Stevens, D. A. ; Petřík, M. ; Palyzová, A. ; Pluháček, T. . Host factors and Aspergillus metabolites in time: Implications for invasive aspergillosis development and diagnostics Proceedings of the 11th Advances Against Aspergillosis and Mucormycosis; 2024, Milan, Italy.

Petřík M., Haas H., Dobrozemsky G., Lass-Flörl C., Helbok A., Blatzer M., Dietrich H., Decristoforo C.. 68Ga-siderophores for pet imaging of invasive pulmonary aspergillosis: Proof of principle. J. Nucl. Med. 2010;51(4):639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC

Patil R. H., Luptáková D., Havlíček V.. Infection metallomics for critical care in the post-COVID era. Mass Spectrom. Rev. 2023;42:1221–1243. doi: 10.1002/mas.21755. PubMed DOI

Škríba A., Patil R. H., Hubáček P., Dobiáš R., Palyzová A., Marešová H., Pluháček T., Havlíček V.. Rhizoferrin glycosylation in Rhizopus microsporus . J. Fungi. 2020;6(2):89. doi: 10.3390/jof6020089. PubMed DOI PMC

Dobiáš R., Jaworská P., Skopelidou V., Strakoš J., Višňovská D., Káňová M., Škríba A., Lysková P., Bartek T., Janíčková I., Kozel R., Cwiková L., Vrba Z., Navrátil M., Martinek J., Coufalová P., Krejčí E., Ulmann V., Raška M., Stevens D. A., Havlíček V.. Distinguishing invasive from chronic pulmonary infections: Host pentraxin 3 and fungal siderophores in bronchoaalveolar lavage fluids. J. Fungi. 2022;8(11):1194. doi: 10.3390/jof8111194. PubMed DOI PMC

Dellière S., Chauvin C., Wong S. S. W., Gressler M., Possetti V., Parente R., Fontaine T., Krüger T., Kniemeyer O., Bayry J., Carvalho A., Brakhage A. A., Inforzato A., Latgé J.-P., Aimanianda V.. Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus . Nat. Commun. 2024;15(1):6966. doi: 10.1038/s41467-024-51047-9. PubMed DOI PMC

Henderson R. B., Hobbs J. A. R., Mathies M., Hogg N.. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood. 2003;102(1):328–335. doi: 10.1182/blood-2002-10-3228. PubMed DOI

Bassetti M., Azoulay E., Kullberg B.-J., Ruhnke M., Shoham S., Vazquez J., Giacobbe D. R., Calandra T.. EORTC/MSGERC definitions of invasive fungal diseases: Summary of activities of the intensive care unit working group. Clin. Infect. Dis. 2021;72(Supplement_2):SS121–S127. doi: 10.1093/cid/ciaa1751. PubMed DOI

Sandhu P., Xu X., Bondiskey P. J., Balani S. K., Morris M. L., Tang Y. S., Miller A. R., Pearson P. G.. Disposition of caspofungin, a novel antifungal agent, in mice, rats, rabbits, and monkeys. Antimicrob. Agents Chemother. 2004;48(4):1272–1280. doi: 10.1128/AAC.48.4.1272-1280.2004. PubMed DOI PMC

Huang Q. Y., Li P. C., Yue J. R.. Diagnostic performance of serum galactomannan and β-D-glucan for invasive aspergillosis in suspected patients: A meta-analysis. Medicine. 2024;103(5):e37067. doi: 10.1097/MD.0000000000037067. PubMed DOI PMC

Novák J., Škríba A., Havlíček V.. CycloBranch 2: Molecular Formula Annotations Applied to imzML Data Sets in Bimodal Fusion and LC-MS Data Files. Anal. Chem. 2020;92(10):6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...