Rhizoferrin Glycosylation in Rhizopus microsporus
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-10907S
Czech Science Foundation
LO1509
Ministry of Education, Youth and Sports of the Czech Republic
433103781
Internal grant agency of the Palacky University
PubMed
32570979
PubMed Central
PMC7344610
DOI
10.3390/jof6020089
PII: jof6020089
Knihovny.cz E-resources
- Keywords
- Rhizopus microsporus, glycoside, human isolate, liquid chromatography, mass spectrometry, metabolite, posaconazole metabolism, rhizoferrin, siderophore,
- Publication type
- Journal Article MeSH
Rhizopus spp. are the most common etiological agents of mucormycosis, causing over 90% mortality in disseminated infections. The diagnosis relies on histopathology, culture, and/or polymerase chain reaction. For the first time, the glycosylation of rhizoferrin (RHF) was described in a Rhizopus microsporus clinical isolate by liquid chromatography and accurate tandem mass spectrometry. The fermentation broth lyophilizate contained 345.3 ± 13.5, 1.2 ± 0.03, and 0.03 ± 0.002 mg/g of RHF, imido-RHF, and bis-imido-RHF, respectively. Despite a considerable RHF secretion rate, we did not obtain conclusive RHF detection from a patient with disseminated mucormycosis caused by the same R. microsporus strain. We hypothesize that parallel antimycotic therapy, RHF biotransformation, and metabolism compromised the analysis. On the other hand, the full profile of posaconazole metabolites was retrieved by our in house software CycloBranch.
See more in PubMed
Morin-Sardin S., Nodet P., Coton E., Jany J.-L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol. Rev. 2017;31:12–32. doi: 10.1016/j.fbr.2016.11.002. DOI
Voigt K., Wolf T., Ochsenreiter K., Nagy G., Kaerger K., Shelest E., Papp T. Genetic and metabolic aspects of primary and secondary metabolism of the zygomycetes. In: Hoffmeister D., editor. Biochemistry and Molecular Biology. Springer International Publishing; Cham, Switzerland: 2016. pp. 361–385.
Müller C., Neugebauer T., Zill P., Lass-Flörl C., Bracher F., Binder U. Sterol composition of clinically relevant mucorales and changes resulting from posaconazole treatment. Molecules. 2018;23:1218. doi: 10.3390/molecules23051218. PubMed DOI PMC
Gooday G.W., Carlile M.J. The discovery of fungal sex hormones: III. Trisporic acid and its precursors. Mycologist. 1997;11:126–130. doi: 10.1016/S0269-915X(97)80017-1. DOI
Hollmann M., Razzazi-Fazeli E., Grajewski J., Twaruzek M., Sulyok M., Böhm J. Detection of 3-nitropropionic acid and cytotoxicity in Mucor circinelloides. Mycotoxin Res. 2008;24:140–150. doi: 10.1007/BF03032341. PubMed DOI
Jennessen J., Nielsen K.F., Houbraken J., Lyhne E.K., Schnürer J., Frisvad J.C., Samson R.A. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J. Agric. Food Chem. 2005;53:1833–1840. doi: 10.1021/jf048147n. PubMed DOI
Partida-Martinez L.P., Flores de Looß C., Ishida K., Ishida M., Roth M., Buder K., Hertweck C. Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl. Environ. Microbiol. 2007;73:793–797. doi: 10.1128/AEM.01784-06. PubMed DOI PMC
Winkelmann G. A search for glomuferrin: A potential siderophore of arbuscular mycorrhizal fungi of the genus Glomus. Biometals. 2017;30:559–564. doi: 10.1007/s10534-017-0026-x. PubMed DOI
Carroll C.S., Grieve C.L., Murugathasan I., Bennet A.J., Czekster C.M., Lui H., Naismith J., Moore M.M. The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. Int. J. Biochem. Cell Biol. 2017;89:136–146. doi: 10.1016/j.biocel.2017.06.005. PubMed DOI
Polaino S., Gonzalez-Delgado J.A., Arteaga P., Herrador M.M., Barrero A.F., Cerdá-Olmedo E. Apocarotenoids in the sexual interaction of Phycomyces blakesleeanus. Org. Biomol. Chem. 2012;10:3002–3009. doi: 10.1039/c2ob07147a. PubMed DOI
Lee S.C., Heitman J. Sex in the Mucoralean fungi. Mycoses. 2014;57(Suppl. 3):18–24. doi: 10.1111/myc.12244. PubMed DOI PMC
Sutter R.P., Capage D.A., Harrison T.L., Keen W.A. Trisporic acid biosynthesis in separate plus and minus cultures of Blakeslea trispora: Identification by Mucor assay of two mating-type-specific components. J. Bacteriol. 1973;114:1074–1082. doi: 10.1128/JB.114.3.1074-1082.1973. PubMed DOI PMC
Smith M.J., Shoolery J.N., Schwyn B., Holden I., Neilands J.B. Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J. Am. Chem. Soc. 1985;107:1739–1743. doi: 10.1021/ja00292a047. DOI
Drechsel H., Tschierske M., Thieken A., Jung G., Zähner H., Winkelmann G. The carboxylate type siderophore rhizoferrin and its analogs produced by directed fermentation. J. Ind. Microbiol. 1995;14:105–112. doi: 10.1007/BF01569891. DOI
Haselwandter K., Haas H., Häninger G., Winkelmann G. Siderophores in plant root tissue: Tagetes patula nana colonized by the arbuscular mycorrhizal fungus Gigaspora margarita. Biometals. 2020 doi: 10.1007/s10534-020-00238-0. PubMed DOI
Gao S.-S., Li X.-M., Williams K., Proksch P., Ji N.-Y., Wang B.-G. Rhizovarins A–F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J. Nat. Prod. 2016;79:2066–2074. doi: 10.1021/acs.jnatprod.6b00403. PubMed DOI
Schwartze V.U., Winter S., Shelest E., Marcet-Houben M., Horn F., Wehner S., Linde J., Valiante V., Sammeth M., Riege K., et al. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: An evolutionary genomics analysis in the ancient terrestrial Mucorales (Mucoromycotina) PLoS Genet. 2014;10:e1004496. doi: 10.1371/journal.pgen.1004496. PubMed DOI PMC
Drechsel H., Metzger J., Freund S., Jung G., Boelaert J.R., Winkelmann G. Rhizoferrin—A novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. Biol. Met. 1991;4:238–243. doi: 10.1007/BF01141187. DOI
Sullivan J.T., Jeffery E.F., Shannon J.D., Ramakrishnan G. Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J. Bacteriol. 2006;188:3785–3795. doi: 10.1128/JB.00027-06. PubMed DOI PMC
Carroll C.S., Moore M.M. Ironing out siderophore biosynthesis: A review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit. Rev. Biochem. Mol. Biol. 2018;53:356–381. doi: 10.1080/10409238.2018.1476449. PubMed DOI
Pluhacek T., Lemr K., Ghosh D., Milde D., Novak J., Havlicek V. Characterization of microbial siderophores by mass spectrometry. Mass Spectrom. Rev. 2016;35:35–47. doi: 10.1002/mas.21461. PubMed DOI
Hider R.C., Kong X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010;27:637–657. doi: 10.1039/b906679a. PubMed DOI
Felsenfeld A.J., Rodriguez M., Coleman M., Ross D., Llach F. Desferrioxamine therapy in hemodialysis patients with aluminum-associated bone disease. Kidney Int. 1989;35:1371–1378. doi: 10.1038/ki.1989.136. PubMed DOI
Bonomo R.A. Cefiderocol: A novel siderophore cephalosporin defeating carbapenem-resistant pathogens. Clin. Infect. Dis. 2019;69:S519–S520. doi: 10.1093/cid/ciz823. PubMed DOI PMC
Dobias R., Havlicek V. Microbial siderophores: Markers of infectious diseases. In: Das S., Das H.R., editors. Microbial and Natural Macromolecules: Synthesis and Applications. Academic Press, Elsevier; Cambridge, MA, USA: 2020.
Hoenigl M., Orasch T., Faserl K., Prattes J., Loeffler J., Springer J., Gsaller F., Reischies F., Duettmann W., Raggam R.B., et al. Triacetylfusarinine C: A urine biomarker for diagnosis of invasive aspergillosis. J. Infect. 2019;78:150–157. doi: 10.1016/j.jinf.2018.09.006. PubMed DOI PMC
Pluhacek T., Skriba A., Novak J., Luptakova D., Havlicek V. Analysis of microbial siderophores by mass spectrometry. In: Bhattacharya S.K., editor. Methods Molecular Biology. Springer Nature; New York, NY, USA: 2019. PubMed
Devireddy L.R., Hart D.O., Goetz D.H., Green M.R. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 2010;141:1006–1017. doi: 10.1016/j.cell.2010.04.040. PubMed DOI PMC
Bao G., Clifton M., Hoette T.M., Mori K., Deng S.-X., Qiu A., Viltard M., Williams D., Paragas N., Leete T., et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol. 2010;6:602–609. doi: 10.1038/nchembio.402. PubMed DOI PMC
Münzinger M., Taraz K., Budzikiewicz H., Drechsel H., Heymann P., Winkelmann G., Meyer J.-M. S, S-rhizoferrin (enantio-rhizoferrin)–a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297–the optical antipode of R, R-rhizoferrin isolated from fungi. Biometals. 1999;12:189–193. doi: 10.1023/A:1009259118034. DOI
Burnside D.M., Wu Y., Shafaie S., Cianciotto N.P. The Legionella pneumophila siderophore legiobactin is a polycarboxylate that is identical in structure to rhizoferrin. Infect. Immun. 2015;83:3937–3945. doi: 10.1128/IAI.00808-15. PubMed DOI PMC
Kühn S., Braun V., Köster W. Ferric rhizoferrin uptake into Morganella morganii: Characterization of genes involved in the uptake of a polyhydroxycarboxylate siderophore. J. Bacteriol. 1996;178:496–504. doi: 10.1128/JB.178.2.496-504.1996. PubMed DOI PMC
Matzanke B.F., Böhnke R., Möllmann U., Schünemann V., Schumann G., Trautwein A.X., Winkelmann G. Transport and utilization of rhizoferrin bound iron in Mycobacterium smegmatis. Biometals. 1999;12:315–321. doi: 10.1023/A:1009274415607. PubMed DOI
Dadwal S.S., Kontoyiannis D.P. Recent advances in the molecular diagnosis of mucormycosis. Expert Rev. Mol. Diagn. 2018;18:845–854. doi: 10.1080/14737159.2018.1522250. PubMed DOI
Reid G., Lynch J.P., Fishbein M.C., Clark N.M. Mucormycosis. Semin Respir. Crit. Care Med. 2020;41:99–114. doi: 10.1055/s-0039-3401992. PubMed DOI
Houšť J., Spížek J., Havlíček V. Antifungal drugs. Metabolites. 2020;10:106. doi: 10.3390/metabo10030106. PubMed DOI PMC
Larcher G., Dias M., Razafimandimby B., Bomal D., Bouchara J.-P. Siderophore production by pathogenic mucorales and uptake of deferoxamine B. Mycopathologia. 2013;176:319–328. doi: 10.1007/s11046-013-9693-5. PubMed DOI
Kousser C., Clark C., Sherrington S., Voelz K., Hall R.A. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-42175-0. PubMed DOI PMC
Boukhalfa H., Reilly S.D., Michalczyk R., Iyer S., Neu M.P. Iron(III) coordination properties of a pyoverdin siderophore produced by Pseudomonas putida ATCC 33015. Inorg. Chem. 2006;45:5607–5616. doi: 10.1021/ic060196p. PubMed DOI
Novák J., Škríba A., Havlíček V. CycloBranch 2: Molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal. Chem. 2020;92:6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI
Donnelly J.P., Chen S.C., Kauffman C.A., Steinbach W.J., Baddley J.W., Verweij P.E., Clancy C.J., Wingard J.R., Lockhart S.R., Groll A.H., et al. Revision and update of the consensus definitions of invasive fungal disease from the European organization for research and treatment of cancer and the mycoses study group education and research consortium. Clin. Infect. Dis. 2019 doi: 10.1093/cid/ciz1008. PubMed DOI PMC
Kamimura H. Conversion of zearalenone to zearalenone glycoside by Rhizopus sp. Appl. Environ. Microbiol. 1986;52:515–519. doi: 10.1128/AEM.52.3.515-519.1986. PubMed DOI PMC
Li P., Sun C., Wang Y., Wang S., Yan C., Deng S., Huo X., Feng L., Wang C., Tian Y., et al. Efficiently regioselective glucosylation of estrogen analogues mediated by fungus Rhizopus oryzae AS 3.2380. Catal. Commun. 2017;97:106–110. doi: 10.1016/j.catcom.2017.04.027. DOI
Li Y., Theuretzbacher U., Clancy C.J., Nguyen M.H., Derendorf H. Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin. Pharmacokinet. 2010;49:379–396. doi: 10.2165/11319340-000000000-00000. PubMed DOI
Hamilos G., Samonis G., Kontoyiannis D.P. Pulmonary mucormycosis. Semin Respir. Crit. Care Med. 2011;32:693–702. doi: 10.1055/s-0031-1295717. PubMed DOI
Ramakrishnan G. Iron and virulence in Francisella tularensis. Front. Cell. Infect. Microbiol. 2017;7 doi: 10.3389/fcimb.2017.00107. PubMed DOI PMC
Diagnosis of Aspergillosis in Horses