Quantum dots - characterization, preparation and usage in biological systems
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
19333427
PubMed Central
PMC2660652
DOI
10.3390/ijms10020656
PII: ijms10020656
Knihovny.cz E-zdroje
- Klíčová slova
- Quantum dots, TiO2, biolabeling, biosensing, template methods,
- MeSH
- diagnostické zobrazování metody MeSH
- kvantové tečky chemie MeSH
- lidé MeSH
- molekulární zobrazování metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The use of fluorescent nanoparticles as probes for bioanalytical applications is a highly promising technique because fluorescence-based techniques are very sensitive. Quantum dots (QDs) seem to show the greatest promise as labels for tagging and imaging in biological systems owing to their impressive photostability, which allow long-term observations of biomolecules. The usage of QDs in practical applications has started only recently, therefore, the research on QDs is extremely important in order to provide safe and effective biosensing materials for medicine. This review reports on the recent methods for the preparation of quantum dots, their physical and chemical properties, surface modification as well as on some interesting examples of their experimental use.
Zobrazit více v PubMed
Wang W, Chen C, Lin KH, Fang Y, Lieber CM.Nanosensors. US 2007/0264623 A1, 2007
Kumar CSSR.Nanomaterials for Medical Applications Kirk-Othmer Encyclopedia of Chemical Technology Wiley; 2007http://mrw.interscience.wiley.com/emrw/9780471238966/kirk/article/nanokuma.a01/current/abstract Accessed February 11, 2008.
Kluson P, Drobek M, Bartkova H, Budil I. Welcome in the Nanoworld. Chem. Listy. 2007;101:262–272.
Ferancova A, Labuda J. DNA Biosensors based on nanostrucutred materials. In: Eftekhari A, editor. Nanostrucutred Materials in Electrochemistry. Wiley-VCH; Weinheim, Germany: 2008. pp. 409–434.
Kral V, Sotola J, Neuwirth P, Kejik Z, Zaruba K, Martasek P. Nanomedicine - Current status and perspectives: A big potential or just a catchword? Chem. Listy. 2006;100:4–9.
Ghanem MA, Bartlett PN, de Groot P, Zhukov A. A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochem. Commun. 2004;6:447–453.
Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology. 2008;19:7. PubMed
Mićić OI, Nozik AJ. Colloidal quantum dots of III–V semiconductors. In: Concise, Nalwa HS, editors. Nanostructured Materials and Nanotechnology. Academic Press; San Diego, California: 2002. pp. 183–205.
Matagne P, Leburton JP. Quantum Dots: Artificial Atoms and Molecules. In: Nalwa HS, Bandyopadhyay S, editors. Quantum Dots and Nanowires. American Scientific Publishers; Stevenson Ranch, California: 2003. pp. 2–66.
Ng J, Missous M. Improvements of stacked self-assembled InAs/GaAs quantum dot structures for 1.3 mu m applications. Microelectron. J. 2006;37:1446–1450.
Anantathanasarn S, Notzel R, van Veldhoven PJ, van Otten FWM, Barbarin Y, Servanton G, de Vries T, Smalbrugge E, Geluk EJ, Eijkemans TJ, Bente E, Oei YS, Smit MK, Wolter JH. Wavelength controlled InAs/InP quantum dots for telecom laser applications. Microelectron. J. 2006;37:1461–1467.
Gerion D. Fluorescence imaging in biology using nanoprobes. In: Kumar CSSR, editor. Nanosystem Characterization Tools in the Life Sciences. 1st. Vol. 3. Wiley-VCH; Weinheim, Germany: 2006. pp. 1–37.
Walling MA, Novak JA, Shepard JRE. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 2009;10:441–491. PubMed PMC
Byrne SJ, Williams Y, Davies A, Corr SA, Rakovich A, Gun’ko YK, Rakovich YR, Donegan JF, Volkov Y. “Jelly dots”: Synthesis and cytotoxicity studies of CdTe quantum dot-gelatin nanocomposites. Small. 2007;3:1152–1156. PubMed
Qian HF, Dong CQ, Weng JF, Ren JC. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small. 2006;2:747–751. PubMed
Iyer G, Pinaud F, Tsay J, Weiss S. Solubilization of quantum dots with a recombinant peptide from Escherichia coli. Small. 2007;3:793–798. PubMed PMC
Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small. 2006;2:1412–1417. PubMed
Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006;114:165–172. PubMed PMC
Choi AO, Brown SE, Szyf M, Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med. 2008;86:291–302. PubMed
Gao XH, Dave SR. Bio-Applications of Nanoparticles. Vol. 620. Springer-Verlag; Berlin: Berlin: 2007. Quantum dots for cancer molecular imaging; pp. 57–73. PubMed
Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005;16:63–72. PubMed
Li HC, Zhou QF, Liu W, Yan B, Zhao Y, Jiang GB. Progress in the toxicological researches for quantum dots. Sci. China Ser. B. 2008;51:393–400.
Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, Nemery B, Hoet PHM. Acute toxicity and prothrombotic effects of quantum dots: Impact of surface charge. Environ. Health Perspect. 2008;116:1607–1613. PubMed PMC
Yong KT. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology. 2009;20:10. PubMed
Chen HY, Wang YQ, Xu J, Ji JZ, Zhang J, Hu YZ, Gu YQ. Non-invasive near infrared fluorescence imaging of CdHgTe quantum dots in mouse model. J. Fluoresc. 2008;18:801–811. PubMed
Depalo N, Mallardi A, Comparelli R, Striccoli M, Agostiano A, Curri ML. Luminescent nanocrystals in phospholipid micelles for bioconjugation: An optical and structural investigation. J. Colloid Interface Sci. 2008;325:558–566. PubMed
Emerich DF, Thanos CG. Multifunctional peptide-based nanosystems for improving delivery and molecular imaging. Curr. Opin. Mol. Ther. 2008;10:132–139. PubMed
De La Fuente JM, Berry CC, Riehle M, Cronin L, Curtis ASG.Quantum dots and their uses. US 2007/0249064 A1, 2007
Lin CAJ, Liedl T, Sperling RA, Fernandez-Arguelles MT, Costa-Fernandez JM, Pereiro R, Sanz-Medel A, Chang WH, Parak WJ. Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots) J. Mater. Chem. 2007;17:1343–1346.
Liu TC, Zhang HL, Wang JH, Wang HQ, Zhang ZH, Hua XF, Cao YC, Luo QM, Zhao YD. Study on molecular interactions between proteins on live cell membranes using quantum dot-based fluorescence resonance energy transfer. Anal. Bioanal. Chem. 2008;391:2819–2824. PubMed
Tan WH, Wang KM, He XX, Zhao XJ, Drake T, Wang L, Bagwe RP. Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 2004;24:621–638. PubMed
Hu JT, Li LS, Yang WD, Manna L, Wang LW, Alivisatos AP. Linearly polarized emission from colloidal semiconductor quantum rods. Science. 2001;292:2060–2063. PubMed
Dembski S, Graf C, Kruger T, Gbureck U, Ewald A, Bock A, Ruhl E. Photoactivation of CdSe/ZnS quantum dots embedded in silica colloids. Small. 2008;4:1516–1526. PubMed
Zhang Y, Mi L, Wang PN, Lu SJ, Chen JY, Guo J, Yang WL, Wang CC. Photoluminescence decay dynamics of thiol-capped CdTe quantum dots in living cells under microexcitation. Small. 2008;4:777–780. PubMed
Zheng JJ, Zheng ZH, Gong WW, Hu XB, Gao W. Abnormal temperature behavior of photoluminescence in CdSe/ZnSe self-assembled quantum dots. Solid State Commun. 2008;147:429–432.
Sapsford KE, Pons T, Medintz IL, Mattoussi H. Biosensing with luminescent semiconductor quantum dots. Sensors. 2006;6:925–953.
Huang FH, Chen GN. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2008;70:318–323. PubMed
Tansil NC, Gao ZQ. Nanoparticles in biomolecular detection. Nano Today. 2006;1:28–37.
Chen Z, Li G, Zhang L, Jiang J, Li Z, Peng Z, Deng L. A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal. Bioanal. Chem. 2008;392:1185–1188. PubMed
Chen WB, Wang X, Tu XJ, Pei DJ, Zhao Y, Guo XQ. Water-soluble off-on spin-labeled quantum-dots conjugate. Small. 2008;4:759–764. PubMed
Chen QF, Yang DZ, Xu SK. Conjugations between cysteamine-stabilized CdTe quantum dots and single stranded DNA. Anal. Lett. 2008;41:1964–1974.
Shingyoji M, Gerion D, Pinkel D, Gray JW, Chen FQ. Quantum dots-based reverse phase protein microarray. Talanta. 2005;67:472–478. PubMed
Liu TC, Wang JH, Wang HQ, Zhang HL, Zhang ZH, Hua XF, Cao YC, Zhao YD, Luo QM. Bioconjugate recognition molecules to quantum dots as tumor probes. J. Biomed. Mater. Res. Part A. 2007;83A:1209–1216. PubMed
Shan YM, Wang LP, Shi YH, Zhang H, Li HM, Liu HZ, Yang B, Li TY, Fang XX, Li W. NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling. Talanta. 2008;75:1008–1014. PubMed
Susumu K, Uyeda HT, Medintz IL, Mattoussi H. Design of biotin-functionalized luminescent quantum dots. J Biomed Biotechnol. 2007:7. PubMed PMC
Liedl T, Dietz H, Yurke B, Simmel F. Controlled trapping and release of quantum dots in a DNA-Switchable hydrogel. Small. 2007;3:1688–1693. PubMed
Goldman ER, Medintz IL, Mattoussi H. Luminescent quantum dots in immunoassays. Anal. Bioanal. Chem. 2006;384:560–563. PubMed
Murcia MJ, Naumann CA. Biofunctionalization of fluorescent nanoparticles. In: Kumar CSSR, editor. Biofunctionalization of Nanomaterials. 1st Ed. Vol. 1. Wiley-VCH; Weinheim, Germany: 2005. pp. 1–40.
Protiere M, Reiss P. Highly luminescent Cd1-xZnxSe/ZnS core shell nanocrystals emitting in the blue-green spectral range. Small. 2007;3:399–403. PubMed
Bera D, Qian L, Holloway PH. Time-evolution of photoluminescence properties of ZnO/MgO core/shell quantum dots. J. Phys. D-Appl. Phys. 2008;41:4.
Chen Y, Munechika K, Plante IJL, Munro AM, Skrabalak SE, Xia Y, Ginger DS. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett. 2008;93:3.
Issac A, Jin SY, Lian TQ. Intermittent electron transfer activity from single CdSe/ZnS quantum dots. J. Am. Chem. Soc. 2008;130:11280–11281. PubMed
Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small. 2008;4:1406–1415. PubMed
Pan J, Wang Y, Feng SS. Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging. Biotechnol. Bioeng. 2008;101:622–633. PubMed
Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta. 2007;71:1494–1499. PubMed
Wang J, Liu GD, Wu H, Lin YH. Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small. 2008;4:82–86. PubMed
Dahan M. From analog to digital: Exploring cell dynamics with single quantum dots. Histochem.Cell Biol. 2006;125:451–456. PubMed
Deerinck TJ. The Application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol. Pathol. 2008;36:112–116. PubMed PMC
Kim K, Kim D, Cho EJ, Huh YM. A quantitative analysis of the intracellular transport of quantum dot-peptide in live cells using total internal reflection and confocal microscopy. Prog. Biomed.Opt. Imag. 2007;8:64490K.1–64490K.7.
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. PubMed PMC
Jin T, Fujii F, Komai Y, Seki J, Seiyama A, Yoshioka Y. Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging. Int. J. Mol. Sci. 2008;9:2044–2061. PubMed PMC
Lin S, Xie XY, Patel MR, Yang YH, Li ZJ, Cao F, Gheysens O, Zhang Y, Gambhir SS, Rao JH, Wu JC. Quantum dot imaging for embryonic stem cells. BMC Biotechnol. 2007;7:10. PubMed PMC
Lin SY, Chen NT, Sum SP, Lo LW, Yang CS. Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem Commun. 2008:4762–4764. PubMed
Chen FQ, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004;4:1827–1832.
Lieleg O, Lopez-Garcia M, Semmrich C, Auernheimer J, Kessler H, Bausch AR. Specific integrin Labeling in living Celts using functionalized nanocrystals. Small. 2007;3:1560–1565. PubMed
Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. Int. J. Nanomed. 2008;3:151–167. PubMed PMC
Mahler B, Spinicelli P, Buil S, Quelin X, Hermier JP, Dubertret B. Towards non-blinking colloidal quantum dots. Nat. Mater. 2008;7:659–664. PubMed
Shi YF, He P, Zhu XY. Photoluminescence-enhanced biocompatible quantum dots by phospholipid functionalization. Mater. Res. Bull. 2008;43:2626–2635.
Bodas D, Khan-Malek C. Direct patterning of quantum dots on structured PDMS surface. Sens. Actuator B-Chem. 2007;128:168–172.
Yokota H, Tsunashima K, Iizuka K, Okamoto H. Direct electron beam patterning and molecular beam epitaxy growth of InAs: Site definition of quantum dots. J. Vac. Sci. Technol. B. 2008;26:1097–1099.
Zhu CQ, Wang P, Wang X, Li Y. Facile phosphine-free synthesis of CdSe/ZnS core/shell nanocrystals without precursor injection. Nanoscale Res. Lett. 2008;3:213–220. PubMed PMC
Oluwafemi SO, Revaprasadu N, Ramirez AJ. A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. J. Cryst. Growth. 2008;310:3230–3234.
Gu ZY, Zou L, Fang Z, Zhu WH, Zhong XH. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase. Nanotechnology. 2008;19:7. PubMed
Ma Q, Song TY, Yuan P, Wang C, Su XG. QDs-labeled microspheres for the adsorption of rabbit immunoglobulin G and fluoroimmunoassay. Colloid Surf. B-Biointerfaces. 2008;64:248–254. PubMed
Wang XY, Ma Q, Li B, Li YB, Su XG. The preparation of CdTe nanoparticles and CdTe nanoparticle-label led microspheres for biological applications. Luminescence. 2007;22:1–8. PubMed
Murcia MJ, Shaw DL, Long EC, Naumann CA. Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings. Opt. Commun. 2008;281:1771–1780. PubMed PMC
Jorge P, Martins MA, Trindade T, Santos JL, Farahi F. Optical fiber sensing using quantum dots. Sensors. 2007;7:3489–3534. PubMed PMC
Wang J, Xu J, Goodman MD, Chen Y, Cai M, Shinar J, Lin ZQ. A simple biphasic route to water soluble dithiocarbamate functionalized quantum dots. J. Mater. Chem. 2008;18:3270–3274.
Wang HQ, Zhang HL, Li XQ, Wang JH, Huang ZL, Zhao YD. Solubilization and bioconjugation of QDs and their application in cell imaging. J. Biomed. Mater. Res. Part A. 2008;86A:833–841. PubMed
Koole R, van Schooneveld MM, Hilhorst J, Donega CD, t Hart DC, van Blaaderen A, Vanmaekelbergh D, Meijerink A. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mat. 2008;20:2503–2512.
Liu W, He ZK, Liang JG, Zhu YL, Xu HB, Yang XL.Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles J. Biomed. Mater. Res.Part A200884A1018–1025. PubMed
Zhang BB, Cheng J, Li DN, Liu XH, Ma GP, Chang J. A novel method to make hydrophilic quantum dots and its application on biodetection. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2008;149:87–92.
Djenizian T, Balaur E, Schmuki P. Direct immobilization of DNA on diamond-like carbon nanodots. Nanotechnology. 2006;17:2004–2007.
Henini M. Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy. Nanoscale Res. Lett. 2006;1:32–45.
Dai CA, Wu YL, Lee YH, Chang CJ, Su WF. Fabrication of 2D ordered structure of self-assembled block copolymers containing gold nanoparticles. J. Cryst. Growth. 2006;288:128–136.
Eberl K, Lipinski MO, Manz YM, Winter W, Jin-Phillipp NY, Schmidt OG. Self-Assembling Quantum Dots for Optoelectronic Devices on Si and GaAs. 11th International Winterschool on New Developments in Solid State Physics; Mauterndorf, Austria. 21–25, February, 2000; Bv: Mauterndorf, Austria: Elsevier Science; 2000. pp. 164–174.
Wang ZM, Holmes K, Mazur YI, Ramsey KA, Salamo GJ. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy. Nanoscale Res. Lett. 2006;1:57–61.
Chu SZ, Inoue S, Wada K, Hishita S, Kurashima K. Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass. Adv. Func. Mat. 2005;15:1343–1349.
Xiao P, Garcia BB, Guo Q, Liu DW, Cao GZ. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochem. Commun. 2007;9:2441–2447.
Chen PL, Kuo CT, Pan FM, Tsai TG. Preparation and phase transformation of highly ordered TiO2 nanodot arrays on sapphire substrates. Appl. Phys. Lett. 2004;84:3888–3890.
Naicker PK, Cummings PT, Zhang HZ, Banfield JF. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J. Phys. Chem. B. 2005;109:15243–15249. PubMed
Peng HW, Li JB, Li SS, Xia JB. First-principles study on rutile TiO2 quantum dots. J. Phys. Chem. C. 2008;112:13964–13969.
Luo M, Cheng K, Weng WJ, Song CL, Du P, Shen G, Xu G, Han GR. Preparation of high-density TiO2 nanodots on Si substrate by a novel method. Mater. Lett. 2008;62:1965–1968.
Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Func. Mater. 2008;18:591–599.
Hazdra P, Voves J, Oswald J, Kuldova K, Hospodkova A, Hulicius E, Pangrac J. Optical Characterisation of MOVPE Grown Vertically Correlated InAs/GaAs Quantum Dots. Conference on European Nano Systems (ENS 2006); Paris, FRANCE. 14–15 December 2006; Paris, France: Elsevier Sci. Ltd.; 2006. pp. 1070–1074.
Gu Y, Kuskovsky IL, Fung J, Robinson R, Herman IP, Neumark GF, Zhou X, Guo SP, Tamargo MC. Determination of size and composition of optically active CdZnSe/ZnBeSe quantum dots. Appl. Phys. Lett. 2003;83:3779–3781.
Rameshwar T, Samal S, Lee S, Kim S, Cho J, Kim IS. Determination of the size of water-soluble nanoparticles and quantum dots by field-flow fractionation. J. Nanosci. Nanotechnol. 2006;6:2461–2467. PubMed
Hapke-Wurst I, Zeitler U, Schumacher HW, Haug RJ, Pierz K, Ahlers FJ. Size determination of InAs quantum dots using magneto-tunnelling experiments. Semicond. Sci. Technol. 1999;14:L41–L43.
Yamauchi T, Matsuba Y, Ohyama Y, Tabuchi M, Nakamura A. Quantum Size Effects of InAs- and InGaAs-Quantum Dots Studied by Scanning Tunneling Microscopy/Spectroscopy. Inst Pure Applied Physics; International Symposium on Formation, Physics and Device Application of Quantum Dot Structures (QDS 2000); Sapporo, Japan. 10–14 September 2000; Sapporo, Japan: pp. 2069–2072.
Lees EE, Gunzburg MJ, Nguyen TL, Howlett GJ, Rothacker J, Nice EC, Clayton AHA, Mulvaney P. Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Lett. 2008;8:2883–2890. PubMed
Time-Dependent Growth of Silica Shells on CdTe Quantum Dots
Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique
Lead ions encapsulated in liposomes and their effect on Staphylococcus aureus
Voltammetry as a tool for characterization of CdTe quantum dots
Modern micro and nanoparticle-based imaging techniques
Self-ordered TiO2 quantum dot array prepared via anodic oxidation