Self-ordered TiO2 quantum dot array prepared via anodic oxidation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
22333295
PubMed Central
PMC3305443
DOI
10.1186/1556-276x-7-123
PII: 1556-276X-7-123
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The template-based methods belong to low-cost and rapid preparation techniques for various nanostructures like nanowires, nanotubes, and nanodots or even quantum dots [QDs]. The nanostructured surfaces with QDs are very promising in the application as a sensor array, also called 'fluorescence array detector.' In particular, this new sensing approach is suitable for the detection of various biomolecules (DNA, proteins) in vitro (in clinical diagnostics) as well as for in vivo imaging.The paper deals with the fabrication of TiO2 planar nanostructures (QDs) by the process of titanium anodic oxidation through an alumina nanoporous template on a silicon substrate. Scanning electron microscopy observation showed that the average diameter of TiO2 QDs is less than 10 nm. Raman spectroscopic characterization of self-organized titania QDs confirmed the presence of an anatase phase after annealing at 400°C in vacuum. Such heat-treated TiO2 QDs revealed a broad emission peak in the visible range (characterized by fluorescence spectroscopy).
Zobrazit více v PubMed
Drummen GPC. Quantum Dots - From Synthesis to Applications in Biomedicine and Life Sciences. Int J Mol Sci. 2010;11:154–163. doi: 10.3390/ijms11010154. PubMed DOI PMC
Chen C, Peng J, Xia HS, Wu QS, Zeng LB. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology. 2010;21:6. PubMed
Chomoucka J, Drbohlavova J, Adam V, Kizek R, Hubalek J. In: 2009 32nd International Spring Seminar on Electronics Technology; 2009, Brno. Prášek J, Adámek M, editor. Szendiuch I: Ieee; 2009. Synthesis of Glutathione-coated Quantum Dots; pp. 653–657.
Oh JK. Surface modification of colloidal CdX-based quantum dots for biomedical applications. J Mater Chem. 2010;20:8433–8445. doi: 10.1039/c0jm01084g. DOI
Veilleux V, Lachance-Quirion D, Dore K, Landry DB, Charette PG. Strain-induced effects in colloidal quantum dots: lifetime measurements and blinking statistics. Nanotechnology. 2010;21:6. PubMed
Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum Dots - Characterization, Preparation and Usage in Biological Systems. Int J Mol Sci. 2009;10:656–673. doi: 10.3390/ijms10020656. PubMed DOI PMC
Bodas D, Khan-Malek C. Direct patterning of quantum dots on structured PDMS surface. Sens Actuator B-Chem. 2007;128:168–172. doi: 10.1016/j.snb.2007.05.043. DOI
Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Func Mater. 2008;18:591–599. doi: 10.1002/adfm.200700728. DOI
Naicker PK, Cummings PT, Zhang HZ, Banfield JF. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J Phys Chem B. 2005;109:15243–15249. doi: 10.1021/jp050963q. PubMed DOI
Peng HW, Li JB, Li SS, Xia JB. First-principles study on rutile TiO2 quantum dots. J Phys Chem C. 2008;112:13964–13969. doi: 10.1021/jp8042973. DOI
Chen PL, Kuo CT, Pan FM, Tsai TG. Preparation and phase transformation of highly ordered TiO2 nanodot arrays on sapphire substrates. Appl Phys Lett. 2004;84:3888–3890. doi: 10.1063/1.1738941. DOI
Hubalek J, Hrdy R, Vorozhtsova M. In: Proceedings of the Eurosensors XXIII Conference 06-09 September, 2009; Lausanne, Switzerland. Brugger J, Briand D, editor. Elsevier Science Bv; 2009. A new tool for the post-process modification of chips by nanostructures for chemical sensing; pp. 36–39.
Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C. Quantum size effect in TiO2 nanoparticles: does it exist? Appl Surf Sci. 2000;162-163:565–570.
Mazza T, Barborini E, Piseri P, Milani P, Cattaneo D. Raman spectroscopy characterization of TiO2 rutile nanocrystals. Phys Rev B. 2007;75:045416.