Modern micro and nanoparticle-based imaging techniques

. 2012 Nov 02 ; 12 (11) : 14792-820. [epub] 20121102

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23202187

The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted.

Zobrazit více v PubMed

Llinas R.R., Walton K.D., Nakao M., Hunter I., Anquetil P.A. Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes. J. Nanopart. Res. 2005;7:111–127.

Santra S., Yang H., Stanley J.T., Holloway P.H., Moudgil B.M., Walter G., Mericle R.A. Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem. Commun. 2005;2005:3144–3146. PubMed

Keefer E.W., Botterman B.R., Romero M.I., Rossi A.F., Gross G.W. Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 2008;3:434–439. PubMed

Neuwelt E.A., Varallyay C.G., Manninger S., Solymosi D., Haluska M., Hunt M.A., Nesbit G., Stevens A., Jerosch-Herold M., Jacobs P.M., et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiograpgy in central nervous system malignancy: A pilot study. Neurosurgery. 2007;60:601–611. PubMed

Neuwelt E.A., Varallyay P., Bago A.G., Muldoon L.L., Nesbit G., Nixon R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol. 2004;30:456–471. PubMed

Clavijo-Jordan V., Kodibagkar V.D., Beeman S.C., Hann B.D., Bennett K.M. Principles and emerging applications of nanomagnetic materials in medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012;4:345–365. PubMed

Rumenapp C., Gleich B., Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm. Res. 2012;29:1165–1179. PubMed

Thanh N.T.K. Magnetic Nanoparticles from Fabrication to Clinical Applications. Taylor and Francis; Oxon, UK: 2012. p. 583.

Arias J.L., Reddy L.H., Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 2012;22:7622–7632.

Banerjee R., Katsenovich Y., Lagos L., McIintosh M., Zhang X., Li C.Z. Nanomedicine: Magnetic nanoparticles and their biomedical applications. Curr. Med. Chem. 2010;17:3120–3141. PubMed

Khandhar A.P., Ferguson R.M., Simon J.A., Krishnan K.M. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J. Biomed. Mater. Res. A. 2012;100A:728–737. PubMed PMC

Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. PubMed

Silva A.K.A., Wilhelm C., Kolosnjaj-Tabi J., Luciani N., Gazeau F. Cellular transfer of magnetic nanoparticles via cell microvesicles: Impact on cell tracking by magnetic resonance imaging. Pharm. Res. 2012;29:1392–1403. PubMed

Wenzel D., Rieck S., Vosen S., Mykhaylyk O., Trueck C., Eberbeck D., Trahms L., Zimmermann K., Pfeifer A., Fleischmann B.K. Identification of magnetic nanoparticles for combined positioning and lentiviral transduction ofendothelial cells. Pharm. Res. 2012;29:1242–1254. PubMed

Abou-Montet K., Montet X., Weissleder R., Josephson L. Transfection agent induced nanoparticle cell loading. Mol. Imaging. 2005;4:165–171. PubMed

Amiri H., Bustamante R., Millan A., Silva N.J.O., Pinol R., Gabilondo L., Palacio F., Arosio P., Corti M., Lascialfari A. Magnetic and relaxation properties of pultifunctional polymer-based nanostructured bioferrofluids as MRI contrast agents. Magn. Reson. Med. 2011;66:1715–1721. PubMed

Drbohlavova J., Hrdy R., Adam V., Kizek R., Schneeweiss O., Hubalek J. Preparation and properties of various magnetic nanoparticles. Sensors. 2009;9:2352–2362. PubMed PMC

Zboril R., Mashlan M., Petridis D. Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, mossbauer spectroscopy characterization, and applications. Chem. Mat. 2002;14:969–982.

Tucek J., Zboril R., Petridis D. Maghemite nanoparticles by view of mossbauer spectroscopy. J. Nanosci. Nanotechnol. 2006;6:926–947. PubMed

Reshmi G., Kumar P.M., Malathi M. Preparation, characterization and dielectric studies on carbonyl iron/cellulose acetate hydrogen phthalate core/shell nanoparticles for drug delivery applications. Int. J. Pharm. 2009;365:131–135. PubMed

Shubayev V.I., Pisanic T.R., Jin S.H. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 2009;61:467–477. PubMed PMC

Jain T.K., Foy S.P., Erokwu B., Dimitrijevic S., Flask C.A., Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials. 2009;30:6748–6756. PubMed PMC

Schweiger C., Pietzonka C., Heverhagen J., Kissel T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: Synthesis, stability, cytotoxicity and MR imaging. Int. J. Pharm. 2011;408:130–137. PubMed

Kumagai M., Kano M.R., Morishita Y., Ota M., Imai Y., Nishiyama N., Sekino M., Ueno S., Miyazono K., Kataoka K. Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor. J. Control. Release. 2009;140:306–311. PubMed

Masoudi A., Hosseini H.R.M., Shokrgozar M.A., Ahmadi R., Oghabian M.A. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int. J. Pharm. 2012;433:129–141. PubMed

Martelli C., Borelli M., Ottobrini L., Rainone V., Degrassi A., Russo M., Gianelli U., Bosari S., Fiorini C., Trabattoni D., et al. In vivo imaging of lymph node migration of MNP- and In-111-labeled dendritic cells in a transgenic mouse model of breast cancer (MMTV-Ras) Mol. Imaging Biol. 2012;14:183–196. PubMed

Jiang W.L., Xie H., Ghoorah D., Shang Y.L., Shi H.J., Liu F., Yang X.L., Xu H.B. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One. 2012;7:e37376. PubMed PMC

Soenen S.J., Vande-Velde G., Ketkar-Atre A., Himmelreich U., De Cuyper M. Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011;3:197–211. PubMed

Razansky D., Deliolanis N.C., Vinegoni C., Ntziachristos V. Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr. Pharm. Biotechnol. 2012;13:504–522. PubMed

Alivisatos A.P., Gu W.W., Larabell C. Annual Review of Biomedical Engineering. Vol. 7. Annual Reviews; Palo Alto, CA, USA: 2005. Quantum dots as cellular probes; pp. 55–76. PubMed

Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004;22:47–52. PubMed

Gao X.H., Yang L.L., Petros J.A., Marshal F.F., Simons J.W., Nie S.M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005;16:63–72. PubMed

Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. PubMed PMC

Drbohlavova J., Adam V., Kizek R., Hubalek J. Quantum dots—Characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 2009;10:656–673. PubMed PMC

Yu W.W., Qu L.H., Guo W.Z., Peng X.G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 2003;15:2854–2860.

Baruah S., Ortinero C., Shipin O.V., Dutta J. Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J. Fluoresc. 2012;22:403–408. PubMed

Drummen G. Quantum dots-from synthesis to applications in biomedicine and life sciences. Int. J. Mol. Sci. 2010;11:154–163. PubMed PMC

Jin Z.W., Hildebrandt N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol. 2012;30:394–403. PubMed

Liu Q.H., Deng R.P., Ji X.L., Pan D.C. Alloyed Mn-Cu-In-S nanocrystals: A new type of diluted magnetic semiconductor quantum dots. Nanotechnology. 2012;23:2–6. PubMed

Mattoussi H., Palui G., Na H.B. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv. Drug Deliv. Rev. 2012;64:138–166. PubMed

Mukerjee A., Ranjan A.P., Vishwanatha J.K. Combinatorial nanoparticles for cancer diagnosis and therapy. Curr. Med. Chem. 2012;19:3714–3721. PubMed

Nie S.M., Xing Y., Kim G.J., Simons J.W. Annual Review of Biomedical Engineering. Vol. 9. Annual Reviews; Palo Alto, CA, USA: 2007. Nanotechnology applications in cancer; pp. 257–288. PubMed

Pericleous P., Gazouli M., Lyberopoulou A., Rizos S., Nikiteas N., Efstathopoulos E.P. Quantum dots hold promise for early cancer imaging and detection. Int. J. Cancer. 2012;131:519–528. PubMed

Singhal M., Sharma J.K., Kumar S. Effect of biocompatible glutathione capping on core-shell ZnS quantum dots. J. Mater. Sci. Mater. Electron. 2012;23:1387–1392.

Chan W.C.W., Nie S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–2018. PubMed

Jaiswal J.K., Mattoussi H., Mauro J.M., Simon S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003;21:47–51. PubMed

Larson D.R., Zipfel W.R., Williams R.M., Clark S.W., Bruchez M.P., Wise F.W., Webb W.W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003;300:1434–1436. PubMed

Medintz I.L., Clapp A.R., Mattoussi H., Goldman E.R., Fisher B., Mauro J.M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003;2:630–638. PubMed

Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005;4:435–446. PubMed

Ryvolova M., Chomoucka J., Janu L., Drbohlavova J., Adam V., Hubalek J., Kizek R. Biotin-modified glutathione as a functionalized coating for bioconjugation of CdTe based quantum dots. Electrophoresis. 2011;32:1619–1622. PubMed

Wu X.Y., Liu H.J., Liu J.Q., Haley K.N., Treadway J.A., Larson J.P., Ge N.F., Peale F., Bruchez M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003;21:41–46. PubMed

Maysinger D., Behrendt M., Lalancette-Herbert M., Kriz J. Real-time imaging of astrocyte response to quantum dots: In vivo screening model system for biocompatibility of nanoparticles. Nano Lett. 2007;7:2513–2520. PubMed

Zimmer J.P., Kim S.W., Ohnishi S., Tanaka E., Frangioni J.V., Bawendi M.G. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc. 2006;128:2526–2527. PubMed PMC

Cai W.B., Shin D.W., Chen K., Gheysens O., Cao Q.Z., Wang S.X., Gambhir S.S., Chen X.Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6:669–676. PubMed

Smith J.D., Fisher G.W., Waggoner A.S., Campbell P.G. The use of quantum dots for analysis of chick CAM vasculature. Microvasc. Res. 2007;73:75–83. PubMed

Walling M., Novak J., Shepard J.R.E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 2009;10:441–491. PubMed PMC

Voura E.B., Jaiswal J.K., Mattoussi H., Simon S.M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 2004;10:993–998. PubMed

Pic E., Pons T., Bezdetnaya L., Leroux A., Guillemin F., Dubertret B., Marchall F. Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node mapping in mice. Mol. Imaging. Biol. 2010;12:394–405. PubMed

Pons T., Pic E., Lequeux N., Cassette E., Bezdetnaya L., Guillemin F., Marchal F., Dubertret B. Cadmium-free CuLnS2/ZnS quantum dots for sentinel lymph mode imaging with reduced toxicity. ACS Nano. 2010;4:2531–2538. PubMed

Diagaradjane P., Orenstein-Cardona J.M., Colon-Casasnovas N.E., Deorukhkar A., Shentu S., Kuno N., Schwartz D.L., Gelovani J.G., Krishnan S. Imaging epidermal growth factor receptor expression in vivo: Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res. 2008;14:731–741. PubMed

Bhang S.H., Won N., Lee T.J., Jin H., Nam J., Park J., Chung H., Park H.S., Sung Y.E., Hahn S.K., et al. Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano. 2009;3:1389–1398. PubMed

Choi H.S., Liu W., Misra P., Tanaka E., Zimmer J.P., Ipe B.I., Bawendi M.G., Frangioni J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007;25:1165–1170. PubMed PMC

Choi H.S., Ipe B.I., Misra P., Lee J.H., Bawendi M.G., Frangioni J.V. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 2009;9:2354–2359. PubMed PMC

Choi H.S., Liu W.H., Liu F.B., Nasr K., Misra P., Bawendi M.G., Frangioni J.V. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2010;5:42–47. PubMed PMC

Moorthy S.K.E., Rousseau O., Viret M., Kociak M. Nanoscale chemical and structural characterization of transient metallic nanowires using aberration-corrected STEM-EELS. Nano Lett. 2012;12:2732–2739. PubMed

Bao Y.J., Li J.J., Wang Y.T., Yu L., Wang J., Du W.J., Lou L., Zhu Z.Q., Peng H., Zhu J.Z. Preparation of water soluble CdSe and CdSe/CdS quantum dots and their uses in imaging of cell and blood capillary. Opt. Mater. 2012;34:1588–1592.

Zhan H.J., Zhou P.J., He Z.Y., Tian Y. Microwave-assisted aqueous synthesis of small-sized, highly luminescent CdSeS/ZnS core/shell quantum dots for live cell imaging. Eur. J. Inorg. Chem. 2012;2012:2487–2493.

Dong C.Q., Ren J.C. Water-soluble mercaptoundecanoic acid (MUA)-coated CdTe quantum dots: One-step microwave synthesis, characterization and cancer cell imaging. Luminescence. 2012;27:199–203. PubMed

Fang X.L., Han M., Lu G.F., Tu W.W., Dai Z.H. Electrochemiluminescence of CdSe quantum dots for highly sensitive competitive immunosensing. Sens. Actuator B Chem. 2012;168:271–276.

Jiang P., Zhu C.N., Zhang Z.L., Tian Z.Q., Pang D.W. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials. 2012;33:5130–5135. PubMed

Zhang Y., Hong G.S., Zhang Y.J., Chen G.C., Li F., Dai H.J., Wang Q.B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano. 2012;6:3695–3702. PubMed PMC

Gu Y.P., Cui R., Zhang Z.L., Xie Z.X., Pang D.W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012;134:79–82. PubMed

Jung J., Kim M.A., Cho J.H., Lee S.J., Yang I., Cho J., Kim S.K., Lee C., Park J.K. Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T-1-weighted MR and photoluminescence imaging. Biomaterials. 2012;33:5865–5874. PubMed

Ghaderi S., Ramesh B., Seifalian A.M. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. J. Drug Target. 2011;19:475–486. PubMed

Hoshino A., Hanada S., Yamamoto K. Toxicity of nanocrystal quantum dots: The relevance of surface modifications. Arch. Toxicol. 2011;85:707–720. PubMed

Ruan J., Song H., Qian Q.R., Li C., Wang K., Bao C.C., Cui D.X. Her2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials. 2012;33:7093–7102. PubMed

He M., Huang P., Zhang C.L., Hu H.Y., Bao C.C., Gao G., He R., Cui D.X. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv. Funct. Mater. 2011;21:4470–4477.

Vetrone F., Capobianco J.A. Lanthanide-doped fluoride nanoparticles: Luminescence, upconversion, and biological applications. Int. J. Nanotechnol. 2008;5:1306–1339.

Wang F., Banerjee D., Liu Y.S., Chen X.Y., Liu X.G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst. 2010;135:1839–1854. PubMed

Koole R., Mulder W.J.M., van Schooneveld M.M., Strijkers G.J., Meijerink A., Nicolay K. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009;1:475–491. PubMed

Kim J., Piao Y., Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 2009;38:372–390. PubMed

Smith A.A. Hematein chelates of unusual metal ions for tinctorial histochemistry. Biotech. Histochem. 2010;85:43–54. PubMed

Aoki V., Fukumori L.M.I., Freitas E.L., Sousa J.X., Perigo A.M., Oliveira Z.N.P. Direct and indirect immunofluorescence. An. Brasil. Dermatol. 2010;85:490–499. PubMed

Shakes D.C., Miller D.M., Nonet M.L. Caenorhabditis Elegans: Cell Biology and Physiology. 2nd ed. Vol. 107. Elsevier; Oxford, UK: 2012. Immunofluorescence microscopy; pp. 35–66. PubMed

Thaler M., Roy S., Fornara A., Bitsche M., Qin J., Muhammed M., Salvenmoser W., Rieger G., Fischer A.S., Glueckert R. Visualization and analysis of superparamagnetic iron oxide nanoparticles in the inner ear by light microscopy and energy filtered TEM. Nanomed. Nanotechnol. Biol. Med. 2011;7:360–369. PubMed

Hua M.Y., Lin Y.C., Tsai R.Y., Chen H.C., Liu Y.C. A hydrogen peroxide sensor based on a horseradish peroxidase/polyaniline/carboxy-functionalized multiwalled carbon nanotube modified gold electrode. Electrochim. Acta. 2011;56:9488–9495.

Zheng L., Jiang F.H., Ma G.R., Zhuang Q.F., Li F. Hydrogen peroxide sensor based on horseradish peroxidase combined with CaCO3 microspheres and gold nanoparticles. Chem. Res. Chin. Univ. 2011;27:875–879.

Zhuang J., Fan K.L., Gao L.Z., Lu D., Feng J., Yang D.L., Gu N., Zhang Y., Liang M.M., Yan X.Y. Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol. Pharm. 2012;9:1983–1989. PubMed

El-Sayed I., Huang X., Macheret F., Humstoe J.O., Kramer R., El-Sayed M. Effect of plasmonic gold nanoparticles on benign and malignant cellular autofluorescence: A novel probe for fluorescence based detection of cancer. Technol. Cancer Res. Treat. 2007;6:403–412. PubMed

Intartaglia R., Bagga K., Scotto M., Diaspro A., Brandi F. Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt. Mater. Express. 2012;2:510–518.

Zhao Y.Y., Li Y., Li W., Wu Y.Q., Wu L.X. Preparation, structure, and imaging of luminescent SiO2 nanoparticles by covalently grafting surfactant-encapsulated europium-substituted polyoxometalates. Langmuir. 2010;26:18430–18436. PubMed

Zhang J., Fu Y., Lakowicz J.R. Luminescent images of single gold nanoparticles and their labeling on silica beads. Opt. Express. 2007;15:13415–13420. PubMed PMC

Ohulchanskyy T.Y., Roy I., Yong K.T., Pudavar H.E., Prasad P.N. High-resolution light microscopy using luminescent nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:162–175. PubMed

Santra S., Xu J.S., Wang K.M., Tan W.H. Luminescent nanoparticle probes for bioimaging. J. Nanosci. Nanotechnol. 2004;4:590–599. PubMed

Jung C.Y., Kim J.S., Kim H.S., Ha J.M., Kim S.T., Lim H.J., Koo S.M. Selective surface reactions for janus ORMOSIL particles with multiple functional groups using an ordered monolayer film at liquid-liquid interface. J. Colloid Interface Sci. 2012;367:257–263. PubMed

Paschoal A.R., Ayala A.P., Pinto R.C.F., Paschoal C.W.A., Tanaka A.A., Boaventura J.S., Jose N.M. About the SDS inclusion in PDMS/TEOS ORMOSIL: A vibrational spectroscopy and confocal raman scattering study. J. Raman Spectrosc. 2011;42:1601–1605.

Xiong L.Q., Chen Z.G., Tian Q.W., Cao T.Y., Xu C.J., Li F.Y. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 2009;81:8687–8694. PubMed

Yu M.X., Li F.Y., Chen Z.G., Hu H., Zhan C., Yang H., Huang C.H. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 2009;81:930–935. PubMed

Prow T.W., Kotov N.A., Lvov Y.M., Rijnbrand R., Leary J.F. Nanoparticles, molecular biosensors, and multispectral confocal microscopy. J. Mol. Histol. 2004;35:555–564. PubMed

Zhao S.S., Yuan L., Wang J.C., Zhang X., He Z.G., Zhang Q. A novel and facile approach to imaging nanoparticles transport across transwell filter grown cell mono layer in real-time and in situ under confocal laser scanning microscopy. Biol. Pharm. Bull. 2012;35:335–345. PubMed

Wang T.T., Bai J., Jiang X., Nienhaus G.U. Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. 2012;6:1251–1259. PubMed

Veksler B.A., Lemelle A., Kozhevnikov I.S., Akchurin G.G., Meglinski I.V. Improving image quality in reflection confocal microscopy involving gold nanoparticles and osmotically active immersion liquids. Opt. Spectrosc. 2011;110:483–488.

Romero G., Rojas E., Estrela-Lopis I., Donath E., Moya S.E. Spontaneous confocal raman microscopy—A tool to study the uptake of nanoparticles and carbon nanotubes into cells. Nanoscale Res. Lett. 2011;6:1–4. PubMed PMC

Failla A.V., Jager S., Zuchner T., Steiner M., Meixner A.J. Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy. Opt. Express. 2007;15:8532–8542. PubMed

Murawska M., Skrzypczak A., Kozak M. Structure and morphology of gold nanoparticles in solution studied by TEM, SAXS and UV-Vis. Acta Phys. Pol. A. 2012;121:888–892.

Sanada T., Okumura K., Murakami C., Oyama T., Isoda A., Katada N. Spontaneous dispersion of gold nanoparticles loaded on USY zeolites as analyzed by XAFS, XRD, and TEM. Chem. Lett. 2012;41:337–339.

Tran D.T., Jones I.P., Preece J.A., Johnston R.L., van den Brom C.R. TEM characterization of chemically synthesized copper-gold nanoparticles. J. Nanopart. Res. 2011;13:4229–4237.

Hayashi T., Muramatsu H., Kim Y.A., Kajitani H., Imai S., Kawakami H., Kobayashi M., Matoba T., Endo M., Dresselhaus M.S. TEM image simulation study of small carbon nanotubes and carbon nanowire. Carbon. 2006;44:1130–1136.

Qin C., Peng L.M. Measurement accuracy of the diameter of a carbon nanotube from TEM images. Phys. Rev. B. 2002;65:1–7.

Kashtiban R.J., Bangert U., Sherliker B., Halsall M.P., Harvey A.J. Study of InGaN/GaN Quantum Dot Systems by TEM techniques and Photoluminescence Spectroscopy. Proceedings of the 16th International Conference on Microscopy of Semiconducting Materials; Oxford, UK. 17– 20 March 2010; Volume 209.

Kirmse H., Hausler I., Neumann W., Strittmatter A., Reissmann L., Bimberg D. Microscopy of Semiconducting Materials. Vol. 120. Springer; Berlin, Germany: 2008. TEM characterization of self-organized (In,Ga)N quantum dots; pp. 255–258.

Sychugov I., Lu J., Elfstrom N., Linnros J. Structural imaging of a Si quantum dot: Towards combined PL and TEM characterization. J. Lumines. 2006;121:353–355.

Jackson C.L., Chanzy H.D., Booy F.P., Drake B.J., Tomalia D.A., Bauer B.J., Amis E.J. Visualization of dendrimer molecules by transmission electron microscopy (TEM): Staining methods and cryo-TEM of vitrified solutions. Macromolecules. 1998;31:6259–6265.

Pumera M. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir. 2007;23:6453–6458. PubMed

Alexander S.K., Azencott R., Bodmann B.C., Bouamrani A., Chiappini C., Ferrari M., Liu X., Tasciotti E. SEM Image Analysis for Quality Control Of Nanoparticles. Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns; Berlin, Germany. 2–4 September 2009; pp. 590–597. Volume 5702.

Lemine O.M. Microstructural characterisation of alpha-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices Microstruct. 2009;45:576–582.

Strohmeier B.R., Bunker K.L., Lopano C.L., Marquis J.P., Piasecki J.D., Bennethum K.E., White R.G., Nunney T., Lee R.J. XPS and SEM/STEM characterization of silver nanoparticles formed from the X-ray-induced and thermal reduction of silver behenate. Microsc. Microanal. 2009;15:1298–1299.

Gomez-Villalba L.S., Delgado M.L., Ruiz-Navas E.M. High resolution transmission electron microscopy study on the development of nanostructured precipitates in Al-Cu obtained by mechanical alloying. Mater. Chem. Phys. 2012;132:125–130.

Nguyen V.L., Ohtaki M., Matsubara T., Cao M.T., Nogami M. New experimental evidences of Pt-Pd bimetallic nanoparticles with core-shell configuration and highly fine-ordered nanostructures by high-resolution electron transmission microscopy. J. Phys. Chem. C. 2012;116:12265–12274.

Rouviere J.L., Bougerol C., Amstatt B., Bellet-Almaric E., Daudin B. Measuring local lattice polarity in AlN and GaN by high resolution Z-contrast imaging: The case of (0001) and (1(1)over-bar00) GaN quantum dots. Appl. Phys. Lett. 2008;92:1–5.

Witkowski S., Ruszak M., Sayag C., Pielaszek J., Djega-Mariadassou G. Nanocrystalline NbC formation from mesostructured niobium oxide studied by HRTEM, SAED and in situ XRD. Appl. Catal. A Gen. 2006;307:205–211.

Falke M., Mogilatenko A., Neumann W., Brombacher C., Rohrmann H., Kratzer M., Albrecht M., Bleloch A., Terborg R., Kroemer R., et al. Element distribution in novel hedgehog-like magnetic nanostructures studied by Cs-corrected STEM-EELS and uncorrected STEM-XEDS using SDD-technology. Microsc. Microanal. 2009;15:1214–1215.

Zhao W.W., Graca S. Quantum Confined Semiconductor Nanostructures. Vol. 737. Materials Research Society; Warrendale, PA, USA: 2003. Evidence of Ti-related inclusions in an al alloy interconnecting layer for nanometer 256 MBit DRAM semiconductor devices characterized by TEM, STEM, EELS elemental mapping, and XEDS linescan; pp. 649–654.

Estrade S., Yedra L., Lopez-Ortega A., Estrader M., Salazar-Alvarez G., Baro M.D., Nogues J., Peiro F. Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron. 2012;43:30–36. PubMed

Stender A.S. Plasmonic behavior of quantum-size metallic nanoparticles as investigated with STEM-EELS. MRS Bull. 2012;37:543–544.

Brandt J., Klemenz A., Raum K., Seidler S. Acoustical Imaging. Vol. 26. Springer; Berlin, Germany: 2002. Scanning acoustic microscopy for micromeasurement of elastomechanical bone properties—Comparison with nanoindentation results; pp. 53–59.

Rupin F., Saied A., Dalmas D., Peyrin F., Haupert S., Raum K., Barthel E., Boivin G., Laugier P. Assessment of microelastic properties of bone using scanning acoustic microscopy: A face-to-face comparison with nanoindentation. Jpn. J. Appl. Phys. 2009;48:1–5.

Burke K.B., Stapleton A.J., Vaughan B., Zhou X.J., Kilcoyne A.L.D., Belcher W.J., Dastoor P.C. Scanning transmission X-ray microscopy of polymer nanoparticles: Probing morphology on sub-10 nm length scales. Nanotechnology. 2011;22:1–6. PubMed

Burke K.B., Vaughn B., Stapleton A.J., Belcher W.J., Zhou X.J., Kilcoyne A.L.D., Dastoor P.C. Scanning transmission X-ray microscopy of polymer nanoparticles: Probing morphology on sub-10 nm length scales. Abstr. Paper. Am. Chem. Soc. 2011;242:1. PubMed

Bartling S., Barke I., Sell K., Polei S., von Oeynhausen V., Meiwes-Broer K.H. Structure of AuSi nanoparticles on Si(111) from reflection high-energy electron diffraction and scanning tunneling microscopy. Eur. Phys. J. D. 2011;63:225–230.

Rim K.T., Eom D., Liu L., Stolyarova E., Raitano J.M., Chan S.W., Flytzani-Stephanopoulos M., Flynn G.W. Charging and chemical reactivity of gold nanoparticles and adatoms on the (111) surface of single-crystal magnetite: A scanning tunneling microscopy/spectroscopy study. J. Phys. Chem. C. 2009;113:10198–10205.

Zhou Y.H., Zhou J. Growth and sintering of Au-Pt nanoparticles on oxidized and reduced CeOx(111) thin films by scanning tunneling microscopy. J. Phys. Chem. Lett. 2010;1:609–615.

Park K.W., Dasika V.D., Nair H.P., Crook A.M., Bank S.R., Yu E.T. Conductivity and structure of ErAs nanoparticles embedded in GaAs pn junctions analyzed via conductive atomic force microscopy. Appl. Phys. Lett. 2012;100:1–6.

Romanchenko A.S., Mikhlin Y.L., Makhova L.V. Investigation of gold nanoparticles immobilized on the surface of pyrite by scanning probe microscopy, scanning tunneling spectroscopy, and X-ray photoelectron spectroscopy. Glass Phys. Chem. 2007;33:417–421.

Silva-Pinto E., Gomes A.P., Pinheiro C.B., Ladeira L.O., Pimenta M.A., Neves B.R.A. Controlled growth and positioning of metal nanoparticles via scanning probe microscopy. Langmuir. 2009;25:3356–3358. PubMed

Vakarelski I.U., Brown S.C., Moudgil B.M., Higashitani K. Nanoparticle-terminated scanning probe microscopy tips and surface samples. Adv. Powder Technol. 2007;18:605–614.

Hubert C., Amrani H., Khan M.A., Vocanson F., Destouches N. Electrical growth of metallic nanoparticles in mesoporous silica films using atomic force microscopy. Appl. Phys. Lett. 2012;100:1–6.

Kent R.D., Vikesland P.J. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ. Sci. Technol. 2012;46:6977–6984. PubMed

Onochi Y., Nakamura M., Hoshi N. Atomic force microscopy of the dissolution of cubic and tetrahedral Pt nanoparticles in electrochemical environments. J. Phys. Chem. C. 2012;116:15134–15140.

Roshanak G.Z., Rahele J., Zahra S., Sarmad N.M., Masoud S.M., Mehdi B.M.M., Mohammad M.A. Phase characterization of TiO2 nanoparticles by transmission electron microscopy (TEM) Clin. Biochem. 2012;44:S215–S216.

Chang L.Y., Lazar S., Baranova E.A., Bock C., Botton G.A. Quantitative characterisation of surface defects and composition on PtRu nanoparticles using aberration-corrected TEM/STEM. Microsc. Microanal. 2009;15:1416–1417.

Shibata M., Shklyaev A.A., Ichikawa M. Observation and nucleation control of Ge nanoislands on Si(111) surfaces using scanning reflection electron microscopy. J. Electron Microsc. 2000;49:217–223. PubMed

Zhang R.Y., Wei Y., Nagahara L.A., Amlani I., Tsui R.K. The contrast mechanism in low voltage scanning electron microscopy of single-walled carbon nanotubes. Nanotechnology. 2006;17:272–276.

Roberts W.S., Lonsdale D.J., Griffiths J., Higson S.P.J. Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens. Bioelectron. 2007;23:301–318. PubMed

Torisawa Y.S., Kaya T., Takii Y., Oyamatsu D., Nishizawa M., Matsue T. Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Anal. Chem. 2003;75:2154–2158. PubMed

Lacina K., Skladal P., Nagy G. The scanning electrochemical microscopy. Chem. Listy. 2012;106:253–263.

Edwards M.A., Martin S., Whitworth A.L., Macpherson J.V., Unwin P.R. Scanning electrochemical microscopy: Principles and applications to biophysical systems. Physiol. Meas. 2006;27:R63–R108. PubMed

Liu B., Cheng W., Rotenberg S.A., Mirkin M.V. Scanning electrochemical microscopy of living cells—Part 2. Imaging redox and acid/basic reactivities. J. Electroanal. Chem. 2001;500:590–597.

Liebetrau J.M., Miller H.M., Baur J.E. Scanning electrochemical microscopy of model neurons: Imaging and real-time detection of morphological changes. Anal. Chem. 2003;75:563–571. PubMed

Hahn D.W., Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community. Appl. Spectrosc. 2010;64:335A–366A. PubMed

Galiova M., Kaiser J., Novotny K., Novotny J., Vaculovic T., Liska M., Malina R., Stejskal K., Adam V., Kizek R. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Appl. Phys. A Mater. Sci. Process. 2008;93:917–922.

Hahn D.W., Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012;66:347–419. PubMed

Porizka P., Prochazka D., Pilat z., Krajcarova L., Kaiser J., Malina R., Novotny J., Zemanek P., Jezek J., Sery M., et al. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectroc. Acta Pt. B Atom. Spectr. 2012;74–75:169–176.

Vitkova G., Novotny K., Prokes L., Hrdlicka A., Kaiser J., Novotny J., Malina R., Prochazka D. Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks. Spectroc. Acta Pt. B Atom. Spectr. 2012;73:1–6.

Babushok V.I., DeLucia F.C., Gottfried J.L., Munson C.A., Miziolek A.W. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement. Spectroc. Acta Pt. B Atom. Spectr. 2006;61:999–1014.

De Giacomo A., Dell'Aglio M., Bruno D., Gaudiuso R., De Pascale O. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples. Spectroc. Acta Pt. B Atom. Spectr. 2008;63:805–816.

Uebbing J., Brust J., Sdorra W., Leis F., Niemax K. Reheating of a laser-produced plasma by a 2nd pulse laser. Appl. Spectrosc. 1991;45:1419–1423.

Mowery M.D., Sing R., Kirsch J., Razaghi A., Bechard S., Reed R.A. Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy. J. Pharm. Biomed. Anal. 2002;28:935–943. PubMed

St-Onge L., Kwong E., Sabsabi M., Vadas E.B. Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectroc. Acta Pt. B-Atom. Spectr. 2002;57:1131–1140.

Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer. 2005;5:161–171. PubMed

Cho K.J., Wang X., Nie S.M., Chen Z., Shin D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008;14:1310–1316. PubMed

Mishra B., Patel B.B., Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed.-Nanotechnol. Biol. Med. 2010;6:9–24. PubMed

Peer D., Karp J.M., Hong S., FaroKhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. PubMed

Zhang L.F., Chan J.M., Gu F.X., Rhee J.W., Wang A.Z., Radovic-Moreno A.F., Alexis F., Langer R., Farokhzad O.C. Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano. 2008;2:1696–1702. PubMed PMC

Kwon G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carr. Syst. 2003;20:357–403. PubMed

Walko C.M., McLeod H. Pharmacogenomic progress in individualized dosing of key drugs for cancer patients. Nat. Clin. Pract. Oncol. 2009;6:153–162. PubMed

Slingerland M., Guchelaar H.J., Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov. Today. 2012;17:160–166. PubMed

Puri A., Loomis K., Smith B., Lee J.H., Yavlovich A., Heldman E., Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carr. Syst. 2009;26:523–580. PubMed PMC

Patra C.R., Bhattacharya R., Mukhopadhyay D., Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 2010;62:346–361. PubMed PMC

Acharya S., Dilnawaz F., Sahoo S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30:5737–5750. PubMed

Misra R., Acharya S., Sahoo S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today. 2010;15:842–850. PubMed

Wang J.Q., Sui M.H., Fan W.M. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab. 2010;11:129–141. PubMed

Adiseshaiah P.P., Hall J.B., McNeil S.E. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:99–112. PubMed

Jain K.K. Nanobiotechnology-based cancer diagnosis preface. Clin. Lab. Med. 2012;32:IX–X. PubMed

Youns M., Hoheisel J.D., Efferth T. Therapeutic and diagnostic applications of nanoparticles. Curr. Drug Targets. 2011;12:357–365. PubMed

Chatterjee D.K., Fong L.S., Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008;60:1627–1637. PubMed

Samia A.C.S., Chen X.B., Burda C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 2003;125:15736–15737. PubMed

Morosini V., Bastogne T., Frochot C., Schneider R., Francois A., Guillemin F., Barberi-Heyo M. Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer. Photochem. Photobiol. Sci. 2011;10:842–851. PubMed

Kam N.W.S., O'Connell M., Wisdom J.A., Dai H.J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA. 2005;102:11600–11605. PubMed PMC

Madani S.Y., Naderi N., Dissanayake O., Tan A., Seifalian A.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomed. 2011;6:2963–2979. PubMed PMC

Carter J.D., Cheng N.N., Qu Y.Q., Suarez G.D., Guo T. Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B. 2007;111:11622–11625. PubMed

Juzenas P., Chen W., Sun Y.P., Coelho M.A.N., Generalov R., Generalova N., Christensen I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 2008;60:1600–1614. PubMed PMC

Zheng Y., Hunting D.J., Ayotte P., Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat. Res. 2008;169:19–27. PubMed

Herold D.M., Das I.J., Stobbe C.C., Iyer R.V., Chapman J.D. Gold microspheres: A selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol. 2000;76:1357–1364. PubMed

Huang P., Bao L., Zhang C.L., Lin J., Luo T., Yang D.P., He M., Li Z.M., Gao G., Gao B., et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9796–9809. PubMed

Chen F., Huang P., Zhu Y.J., Wu J., Zhang C.L., Cui D.X. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 2011;32:9031–9039. PubMed

Pan B.F., Cui D.X., Sheng Y., Ozkan C.G., Gao F., He R., Li Q., Xu P., Huang T. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67:8156–8163. PubMed

Vilarino-Varela M.J., Taylor A., Rockall A.G., Reznek R.H., Powell M.E.B. A verification study of proposed pelvic lymph node localisation guidelines using nanoparticle-enhanced magnetic resonance imaging. Radiother. Oncol. 2008;89:192–196. PubMed

Singhal S., Nie S.M., Wang M.D. Nanotechnology applications in surgical oncology. Ann. Rev. Med. 2010;61:359–373. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...