Modern micro and nanoparticle-based imaging techniques
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23202187
PubMed Central
PMC3522940
DOI
10.3390/s121114792
PII: s121114792
Knihovny.cz E-zdroje
- MeSH
- diagnostické zobrazování metody MeSH
- fluorescence MeSH
- lidé MeSH
- mikrosféry * MeSH
- mikroskopie metody MeSH
- nanočástice * MeSH
- systémy cílené aplikace léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted.
Zobrazit více v PubMed
Llinas R.R., Walton K.D., Nakao M., Hunter I., Anquetil P.A. Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes. J. Nanopart. Res. 2005;7:111–127.
Santra S., Yang H., Stanley J.T., Holloway P.H., Moudgil B.M., Walter G., Mericle R.A. Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem. Commun. 2005;2005:3144–3146. PubMed
Keefer E.W., Botterman B.R., Romero M.I., Rossi A.F., Gross G.W. Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 2008;3:434–439. PubMed
Neuwelt E.A., Varallyay C.G., Manninger S., Solymosi D., Haluska M., Hunt M.A., Nesbit G., Stevens A., Jerosch-Herold M., Jacobs P.M., et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiograpgy in central nervous system malignancy: A pilot study. Neurosurgery. 2007;60:601–611. PubMed
Neuwelt E.A., Varallyay P., Bago A.G., Muldoon L.L., Nesbit G., Nixon R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol. 2004;30:456–471. PubMed
Clavijo-Jordan V., Kodibagkar V.D., Beeman S.C., Hann B.D., Bennett K.M. Principles and emerging applications of nanomagnetic materials in medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012;4:345–365. PubMed
Rumenapp C., Gleich B., Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm. Res. 2012;29:1165–1179. PubMed
Thanh N.T.K. Magnetic Nanoparticles from Fabrication to Clinical Applications. Taylor and Francis; Oxon, UK: 2012. p. 583.
Arias J.L., Reddy L.H., Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 2012;22:7622–7632.
Banerjee R., Katsenovich Y., Lagos L., McIintosh M., Zhang X., Li C.Z. Nanomedicine: Magnetic nanoparticles and their biomedical applications. Curr. Med. Chem. 2010;17:3120–3141. PubMed
Khandhar A.P., Ferguson R.M., Simon J.A., Krishnan K.M. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J. Biomed. Mater. Res. A. 2012;100A:728–737. PubMed PMC
Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. PubMed
Silva A.K.A., Wilhelm C., Kolosnjaj-Tabi J., Luciani N., Gazeau F. Cellular transfer of magnetic nanoparticles via cell microvesicles: Impact on cell tracking by magnetic resonance imaging. Pharm. Res. 2012;29:1392–1403. PubMed
Wenzel D., Rieck S., Vosen S., Mykhaylyk O., Trueck C., Eberbeck D., Trahms L., Zimmermann K., Pfeifer A., Fleischmann B.K. Identification of magnetic nanoparticles for combined positioning and lentiviral transduction ofendothelial cells. Pharm. Res. 2012;29:1242–1254. PubMed
Abou-Montet K., Montet X., Weissleder R., Josephson L. Transfection agent induced nanoparticle cell loading. Mol. Imaging. 2005;4:165–171. PubMed
Amiri H., Bustamante R., Millan A., Silva N.J.O., Pinol R., Gabilondo L., Palacio F., Arosio P., Corti M., Lascialfari A. Magnetic and relaxation properties of pultifunctional polymer-based nanostructured bioferrofluids as MRI contrast agents. Magn. Reson. Med. 2011;66:1715–1721. PubMed
Drbohlavova J., Hrdy R., Adam V., Kizek R., Schneeweiss O., Hubalek J. Preparation and properties of various magnetic nanoparticles. Sensors. 2009;9:2352–2362. PubMed PMC
Zboril R., Mashlan M., Petridis D. Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, mossbauer spectroscopy characterization, and applications. Chem. Mat. 2002;14:969–982.
Tucek J., Zboril R., Petridis D. Maghemite nanoparticles by view of mossbauer spectroscopy. J. Nanosci. Nanotechnol. 2006;6:926–947. PubMed
Reshmi G., Kumar P.M., Malathi M. Preparation, characterization and dielectric studies on carbonyl iron/cellulose acetate hydrogen phthalate core/shell nanoparticles for drug delivery applications. Int. J. Pharm. 2009;365:131–135. PubMed
Shubayev V.I., Pisanic T.R., Jin S.H. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 2009;61:467–477. PubMed PMC
Jain T.K., Foy S.P., Erokwu B., Dimitrijevic S., Flask C.A., Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials. 2009;30:6748–6756. PubMed PMC
Schweiger C., Pietzonka C., Heverhagen J., Kissel T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: Synthesis, stability, cytotoxicity and MR imaging. Int. J. Pharm. 2011;408:130–137. PubMed
Kumagai M., Kano M.R., Morishita Y., Ota M., Imai Y., Nishiyama N., Sekino M., Ueno S., Miyazono K., Kataoka K. Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor. J. Control. Release. 2009;140:306–311. PubMed
Masoudi A., Hosseini H.R.M., Shokrgozar M.A., Ahmadi R., Oghabian M.A. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int. J. Pharm. 2012;433:129–141. PubMed
Martelli C., Borelli M., Ottobrini L., Rainone V., Degrassi A., Russo M., Gianelli U., Bosari S., Fiorini C., Trabattoni D., et al. In vivo imaging of lymph node migration of MNP- and In-111-labeled dendritic cells in a transgenic mouse model of breast cancer (MMTV-Ras) Mol. Imaging Biol. 2012;14:183–196. PubMed
Jiang W.L., Xie H., Ghoorah D., Shang Y.L., Shi H.J., Liu F., Yang X.L., Xu H.B. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One. 2012;7:e37376. PubMed PMC
Soenen S.J., Vande-Velde G., Ketkar-Atre A., Himmelreich U., De Cuyper M. Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011;3:197–211. PubMed
Razansky D., Deliolanis N.C., Vinegoni C., Ntziachristos V. Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr. Pharm. Biotechnol. 2012;13:504–522. PubMed
Alivisatos A.P., Gu W.W., Larabell C. Annual Review of Biomedical Engineering. Vol. 7. Annual Reviews; Palo Alto, CA, USA: 2005. Quantum dots as cellular probes; pp. 55–76. PubMed
Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004;22:47–52. PubMed
Gao X.H., Yang L.L., Petros J.A., Marshal F.F., Simons J.W., Nie S.M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005;16:63–72. PubMed
Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. PubMed PMC
Drbohlavova J., Adam V., Kizek R., Hubalek J. Quantum dots—Characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 2009;10:656–673. PubMed PMC
Yu W.W., Qu L.H., Guo W.Z., Peng X.G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 2003;15:2854–2860.
Baruah S., Ortinero C., Shipin O.V., Dutta J. Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J. Fluoresc. 2012;22:403–408. PubMed
Drummen G. Quantum dots-from synthesis to applications in biomedicine and life sciences. Int. J. Mol. Sci. 2010;11:154–163. PubMed PMC
Jin Z.W., Hildebrandt N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol. 2012;30:394–403. PubMed
Liu Q.H., Deng R.P., Ji X.L., Pan D.C. Alloyed Mn-Cu-In-S nanocrystals: A new type of diluted magnetic semiconductor quantum dots. Nanotechnology. 2012;23:2–6. PubMed
Mattoussi H., Palui G., Na H.B. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv. Drug Deliv. Rev. 2012;64:138–166. PubMed
Mukerjee A., Ranjan A.P., Vishwanatha J.K. Combinatorial nanoparticles for cancer diagnosis and therapy. Curr. Med. Chem. 2012;19:3714–3721. PubMed
Nie S.M., Xing Y., Kim G.J., Simons J.W. Annual Review of Biomedical Engineering. Vol. 9. Annual Reviews; Palo Alto, CA, USA: 2007. Nanotechnology applications in cancer; pp. 257–288. PubMed
Pericleous P., Gazouli M., Lyberopoulou A., Rizos S., Nikiteas N., Efstathopoulos E.P. Quantum dots hold promise for early cancer imaging and detection. Int. J. Cancer. 2012;131:519–528. PubMed
Singhal M., Sharma J.K., Kumar S. Effect of biocompatible glutathione capping on core-shell ZnS quantum dots. J. Mater. Sci. Mater. Electron. 2012;23:1387–1392.
Chan W.C.W., Nie S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–2018. PubMed
Jaiswal J.K., Mattoussi H., Mauro J.M., Simon S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003;21:47–51. PubMed
Larson D.R., Zipfel W.R., Williams R.M., Clark S.W., Bruchez M.P., Wise F.W., Webb W.W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003;300:1434–1436. PubMed
Medintz I.L., Clapp A.R., Mattoussi H., Goldman E.R., Fisher B., Mauro J.M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003;2:630–638. PubMed
Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005;4:435–446. PubMed
Ryvolova M., Chomoucka J., Janu L., Drbohlavova J., Adam V., Hubalek J., Kizek R. Biotin-modified glutathione as a functionalized coating for bioconjugation of CdTe based quantum dots. Electrophoresis. 2011;32:1619–1622. PubMed
Wu X.Y., Liu H.J., Liu J.Q., Haley K.N., Treadway J.A., Larson J.P., Ge N.F., Peale F., Bruchez M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003;21:41–46. PubMed
Maysinger D., Behrendt M., Lalancette-Herbert M., Kriz J. Real-time imaging of astrocyte response to quantum dots: In vivo screening model system for biocompatibility of nanoparticles. Nano Lett. 2007;7:2513–2520. PubMed
Zimmer J.P., Kim S.W., Ohnishi S., Tanaka E., Frangioni J.V., Bawendi M.G. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc. 2006;128:2526–2527. PubMed PMC
Cai W.B., Shin D.W., Chen K., Gheysens O., Cao Q.Z., Wang S.X., Gambhir S.S., Chen X.Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6:669–676. PubMed
Smith J.D., Fisher G.W., Waggoner A.S., Campbell P.G. The use of quantum dots for analysis of chick CAM vasculature. Microvasc. Res. 2007;73:75–83. PubMed
Walling M., Novak J., Shepard J.R.E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 2009;10:441–491. PubMed PMC
Voura E.B., Jaiswal J.K., Mattoussi H., Simon S.M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 2004;10:993–998. PubMed
Pic E., Pons T., Bezdetnaya L., Leroux A., Guillemin F., Dubertret B., Marchall F. Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node mapping in mice. Mol. Imaging. Biol. 2010;12:394–405. PubMed
Pons T., Pic E., Lequeux N., Cassette E., Bezdetnaya L., Guillemin F., Marchal F., Dubertret B. Cadmium-free CuLnS2/ZnS quantum dots for sentinel lymph mode imaging with reduced toxicity. ACS Nano. 2010;4:2531–2538. PubMed
Diagaradjane P., Orenstein-Cardona J.M., Colon-Casasnovas N.E., Deorukhkar A., Shentu S., Kuno N., Schwartz D.L., Gelovani J.G., Krishnan S. Imaging epidermal growth factor receptor expression in vivo: Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res. 2008;14:731–741. PubMed
Bhang S.H., Won N., Lee T.J., Jin H., Nam J., Park J., Chung H., Park H.S., Sung Y.E., Hahn S.K., et al. Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano. 2009;3:1389–1398. PubMed
Choi H.S., Liu W., Misra P., Tanaka E., Zimmer J.P., Ipe B.I., Bawendi M.G., Frangioni J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007;25:1165–1170. PubMed PMC
Choi H.S., Ipe B.I., Misra P., Lee J.H., Bawendi M.G., Frangioni J.V. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 2009;9:2354–2359. PubMed PMC
Choi H.S., Liu W.H., Liu F.B., Nasr K., Misra P., Bawendi M.G., Frangioni J.V. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2010;5:42–47. PubMed PMC
Moorthy S.K.E., Rousseau O., Viret M., Kociak M. Nanoscale chemical and structural characterization of transient metallic nanowires using aberration-corrected STEM-EELS. Nano Lett. 2012;12:2732–2739. PubMed
Bao Y.J., Li J.J., Wang Y.T., Yu L., Wang J., Du W.J., Lou L., Zhu Z.Q., Peng H., Zhu J.Z. Preparation of water soluble CdSe and CdSe/CdS quantum dots and their uses in imaging of cell and blood capillary. Opt. Mater. 2012;34:1588–1592.
Zhan H.J., Zhou P.J., He Z.Y., Tian Y. Microwave-assisted aqueous synthesis of small-sized, highly luminescent CdSeS/ZnS core/shell quantum dots for live cell imaging. Eur. J. Inorg. Chem. 2012;2012:2487–2493.
Dong C.Q., Ren J.C. Water-soluble mercaptoundecanoic acid (MUA)-coated CdTe quantum dots: One-step microwave synthesis, characterization and cancer cell imaging. Luminescence. 2012;27:199–203. PubMed
Fang X.L., Han M., Lu G.F., Tu W.W., Dai Z.H. Electrochemiluminescence of CdSe quantum dots for highly sensitive competitive immunosensing. Sens. Actuator B Chem. 2012;168:271–276.
Jiang P., Zhu C.N., Zhang Z.L., Tian Z.Q., Pang D.W. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials. 2012;33:5130–5135. PubMed
Zhang Y., Hong G.S., Zhang Y.J., Chen G.C., Li F., Dai H.J., Wang Q.B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano. 2012;6:3695–3702. PubMed PMC
Gu Y.P., Cui R., Zhang Z.L., Xie Z.X., Pang D.W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012;134:79–82. PubMed
Jung J., Kim M.A., Cho J.H., Lee S.J., Yang I., Cho J., Kim S.K., Lee C., Park J.K. Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T-1-weighted MR and photoluminescence imaging. Biomaterials. 2012;33:5865–5874. PubMed
Ghaderi S., Ramesh B., Seifalian A.M. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. J. Drug Target. 2011;19:475–486. PubMed
Hoshino A., Hanada S., Yamamoto K. Toxicity of nanocrystal quantum dots: The relevance of surface modifications. Arch. Toxicol. 2011;85:707–720. PubMed
Ruan J., Song H., Qian Q.R., Li C., Wang K., Bao C.C., Cui D.X. Her2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials. 2012;33:7093–7102. PubMed
He M., Huang P., Zhang C.L., Hu H.Y., Bao C.C., Gao G., He R., Cui D.X. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv. Funct. Mater. 2011;21:4470–4477.
Vetrone F., Capobianco J.A. Lanthanide-doped fluoride nanoparticles: Luminescence, upconversion, and biological applications. Int. J. Nanotechnol. 2008;5:1306–1339.
Wang F., Banerjee D., Liu Y.S., Chen X.Y., Liu X.G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst. 2010;135:1839–1854. PubMed
Koole R., Mulder W.J.M., van Schooneveld M.M., Strijkers G.J., Meijerink A., Nicolay K. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009;1:475–491. PubMed
Kim J., Piao Y., Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 2009;38:372–390. PubMed
Smith A.A. Hematein chelates of unusual metal ions for tinctorial histochemistry. Biotech. Histochem. 2010;85:43–54. PubMed
Aoki V., Fukumori L.M.I., Freitas E.L., Sousa J.X., Perigo A.M., Oliveira Z.N.P. Direct and indirect immunofluorescence. An. Brasil. Dermatol. 2010;85:490–499. PubMed
Shakes D.C., Miller D.M., Nonet M.L. Caenorhabditis Elegans: Cell Biology and Physiology. 2nd ed. Vol. 107. Elsevier; Oxford, UK: 2012. Immunofluorescence microscopy; pp. 35–66. PubMed
Thaler M., Roy S., Fornara A., Bitsche M., Qin J., Muhammed M., Salvenmoser W., Rieger G., Fischer A.S., Glueckert R. Visualization and analysis of superparamagnetic iron oxide nanoparticles in the inner ear by light microscopy and energy filtered TEM. Nanomed. Nanotechnol. Biol. Med. 2011;7:360–369. PubMed
Hua M.Y., Lin Y.C., Tsai R.Y., Chen H.C., Liu Y.C. A hydrogen peroxide sensor based on a horseradish peroxidase/polyaniline/carboxy-functionalized multiwalled carbon nanotube modified gold electrode. Electrochim. Acta. 2011;56:9488–9495.
Zheng L., Jiang F.H., Ma G.R., Zhuang Q.F., Li F. Hydrogen peroxide sensor based on horseradish peroxidase combined with CaCO3 microspheres and gold nanoparticles. Chem. Res. Chin. Univ. 2011;27:875–879.
Zhuang J., Fan K.L., Gao L.Z., Lu D., Feng J., Yang D.L., Gu N., Zhang Y., Liang M.M., Yan X.Y. Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol. Pharm. 2012;9:1983–1989. PubMed
El-Sayed I., Huang X., Macheret F., Humstoe J.O., Kramer R., El-Sayed M. Effect of plasmonic gold nanoparticles on benign and malignant cellular autofluorescence: A novel probe for fluorescence based detection of cancer. Technol. Cancer Res. Treat. 2007;6:403–412. PubMed
Intartaglia R., Bagga K., Scotto M., Diaspro A., Brandi F. Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt. Mater. Express. 2012;2:510–518.
Zhao Y.Y., Li Y., Li W., Wu Y.Q., Wu L.X. Preparation, structure, and imaging of luminescent SiO2 nanoparticles by covalently grafting surfactant-encapsulated europium-substituted polyoxometalates. Langmuir. 2010;26:18430–18436. PubMed
Zhang J., Fu Y., Lakowicz J.R. Luminescent images of single gold nanoparticles and their labeling on silica beads. Opt. Express. 2007;15:13415–13420. PubMed PMC
Ohulchanskyy T.Y., Roy I., Yong K.T., Pudavar H.E., Prasad P.N. High-resolution light microscopy using luminescent nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:162–175. PubMed
Santra S., Xu J.S., Wang K.M., Tan W.H. Luminescent nanoparticle probes for bioimaging. J. Nanosci. Nanotechnol. 2004;4:590–599. PubMed
Jung C.Y., Kim J.S., Kim H.S., Ha J.M., Kim S.T., Lim H.J., Koo S.M. Selective surface reactions for janus ORMOSIL particles with multiple functional groups using an ordered monolayer film at liquid-liquid interface. J. Colloid Interface Sci. 2012;367:257–263. PubMed
Paschoal A.R., Ayala A.P., Pinto R.C.F., Paschoal C.W.A., Tanaka A.A., Boaventura J.S., Jose N.M. About the SDS inclusion in PDMS/TEOS ORMOSIL: A vibrational spectroscopy and confocal raman scattering study. J. Raman Spectrosc. 2011;42:1601–1605.
Xiong L.Q., Chen Z.G., Tian Q.W., Cao T.Y., Xu C.J., Li F.Y. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 2009;81:8687–8694. PubMed
Yu M.X., Li F.Y., Chen Z.G., Hu H., Zhan C., Yang H., Huang C.H. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 2009;81:930–935. PubMed
Prow T.W., Kotov N.A., Lvov Y.M., Rijnbrand R., Leary J.F. Nanoparticles, molecular biosensors, and multispectral confocal microscopy. J. Mol. Histol. 2004;35:555–564. PubMed
Zhao S.S., Yuan L., Wang J.C., Zhang X., He Z.G., Zhang Q. A novel and facile approach to imaging nanoparticles transport across transwell filter grown cell mono layer in real-time and in situ under confocal laser scanning microscopy. Biol. Pharm. Bull. 2012;35:335–345. PubMed
Wang T.T., Bai J., Jiang X., Nienhaus G.U. Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. 2012;6:1251–1259. PubMed
Veksler B.A., Lemelle A., Kozhevnikov I.S., Akchurin G.G., Meglinski I.V. Improving image quality in reflection confocal microscopy involving gold nanoparticles and osmotically active immersion liquids. Opt. Spectrosc. 2011;110:483–488.
Romero G., Rojas E., Estrela-Lopis I., Donath E., Moya S.E. Spontaneous confocal raman microscopy—A tool to study the uptake of nanoparticles and carbon nanotubes into cells. Nanoscale Res. Lett. 2011;6:1–4. PubMed PMC
Failla A.V., Jager S., Zuchner T., Steiner M., Meixner A.J. Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy. Opt. Express. 2007;15:8532–8542. PubMed
Murawska M., Skrzypczak A., Kozak M. Structure and morphology of gold nanoparticles in solution studied by TEM, SAXS and UV-Vis. Acta Phys. Pol. A. 2012;121:888–892.
Sanada T., Okumura K., Murakami C., Oyama T., Isoda A., Katada N. Spontaneous dispersion of gold nanoparticles loaded on USY zeolites as analyzed by XAFS, XRD, and TEM. Chem. Lett. 2012;41:337–339.
Tran D.T., Jones I.P., Preece J.A., Johnston R.L., van den Brom C.R. TEM characterization of chemically synthesized copper-gold nanoparticles. J. Nanopart. Res. 2011;13:4229–4237.
Hayashi T., Muramatsu H., Kim Y.A., Kajitani H., Imai S., Kawakami H., Kobayashi M., Matoba T., Endo M., Dresselhaus M.S. TEM image simulation study of small carbon nanotubes and carbon nanowire. Carbon. 2006;44:1130–1136.
Qin C., Peng L.M. Measurement accuracy of the diameter of a carbon nanotube from TEM images. Phys. Rev. B. 2002;65:1–7.
Kashtiban R.J., Bangert U., Sherliker B., Halsall M.P., Harvey A.J. Study of InGaN/GaN Quantum Dot Systems by TEM techniques and Photoluminescence Spectroscopy. Proceedings of the 16th International Conference on Microscopy of Semiconducting Materials; Oxford, UK. 17– 20 March 2010; Volume 209.
Kirmse H., Hausler I., Neumann W., Strittmatter A., Reissmann L., Bimberg D. Microscopy of Semiconducting Materials. Vol. 120. Springer; Berlin, Germany: 2008. TEM characterization of self-organized (In,Ga)N quantum dots; pp. 255–258.
Sychugov I., Lu J., Elfstrom N., Linnros J. Structural imaging of a Si quantum dot: Towards combined PL and TEM characterization. J. Lumines. 2006;121:353–355.
Jackson C.L., Chanzy H.D., Booy F.P., Drake B.J., Tomalia D.A., Bauer B.J., Amis E.J. Visualization of dendrimer molecules by transmission electron microscopy (TEM): Staining methods and cryo-TEM of vitrified solutions. Macromolecules. 1998;31:6259–6265.
Pumera M. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir. 2007;23:6453–6458. PubMed
Alexander S.K., Azencott R., Bodmann B.C., Bouamrani A., Chiappini C., Ferrari M., Liu X., Tasciotti E. SEM Image Analysis for Quality Control Of Nanoparticles. Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns; Berlin, Germany. 2–4 September 2009; pp. 590–597. Volume 5702.
Lemine O.M. Microstructural characterisation of alpha-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices Microstruct. 2009;45:576–582.
Strohmeier B.R., Bunker K.L., Lopano C.L., Marquis J.P., Piasecki J.D., Bennethum K.E., White R.G., Nunney T., Lee R.J. XPS and SEM/STEM characterization of silver nanoparticles formed from the X-ray-induced and thermal reduction of silver behenate. Microsc. Microanal. 2009;15:1298–1299.
Gomez-Villalba L.S., Delgado M.L., Ruiz-Navas E.M. High resolution transmission electron microscopy study on the development of nanostructured precipitates in Al-Cu obtained by mechanical alloying. Mater. Chem. Phys. 2012;132:125–130.
Nguyen V.L., Ohtaki M., Matsubara T., Cao M.T., Nogami M. New experimental evidences of Pt-Pd bimetallic nanoparticles with core-shell configuration and highly fine-ordered nanostructures by high-resolution electron transmission microscopy. J. Phys. Chem. C. 2012;116:12265–12274.
Rouviere J.L., Bougerol C., Amstatt B., Bellet-Almaric E., Daudin B. Measuring local lattice polarity in AlN and GaN by high resolution Z-contrast imaging: The case of (0001) and (1(1)over-bar00) GaN quantum dots. Appl. Phys. Lett. 2008;92:1–5.
Witkowski S., Ruszak M., Sayag C., Pielaszek J., Djega-Mariadassou G. Nanocrystalline NbC formation from mesostructured niobium oxide studied by HRTEM, SAED and in situ XRD. Appl. Catal. A Gen. 2006;307:205–211.
Falke M., Mogilatenko A., Neumann W., Brombacher C., Rohrmann H., Kratzer M., Albrecht M., Bleloch A., Terborg R., Kroemer R., et al. Element distribution in novel hedgehog-like magnetic nanostructures studied by Cs-corrected STEM-EELS and uncorrected STEM-XEDS using SDD-technology. Microsc. Microanal. 2009;15:1214–1215.
Zhao W.W., Graca S. Quantum Confined Semiconductor Nanostructures. Vol. 737. Materials Research Society; Warrendale, PA, USA: 2003. Evidence of Ti-related inclusions in an al alloy interconnecting layer for nanometer 256 MBit DRAM semiconductor devices characterized by TEM, STEM, EELS elemental mapping, and XEDS linescan; pp. 649–654.
Estrade S., Yedra L., Lopez-Ortega A., Estrader M., Salazar-Alvarez G., Baro M.D., Nogues J., Peiro F. Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron. 2012;43:30–36. PubMed
Stender A.S. Plasmonic behavior of quantum-size metallic nanoparticles as investigated with STEM-EELS. MRS Bull. 2012;37:543–544.
Brandt J., Klemenz A., Raum K., Seidler S. Acoustical Imaging. Vol. 26. Springer; Berlin, Germany: 2002. Scanning acoustic microscopy for micromeasurement of elastomechanical bone properties—Comparison with nanoindentation results; pp. 53–59.
Rupin F., Saied A., Dalmas D., Peyrin F., Haupert S., Raum K., Barthel E., Boivin G., Laugier P. Assessment of microelastic properties of bone using scanning acoustic microscopy: A face-to-face comparison with nanoindentation. Jpn. J. Appl. Phys. 2009;48:1–5.
Burke K.B., Stapleton A.J., Vaughan B., Zhou X.J., Kilcoyne A.L.D., Belcher W.J., Dastoor P.C. Scanning transmission X-ray microscopy of polymer nanoparticles: Probing morphology on sub-10 nm length scales. Nanotechnology. 2011;22:1–6. PubMed
Burke K.B., Vaughn B., Stapleton A.J., Belcher W.J., Zhou X.J., Kilcoyne A.L.D., Dastoor P.C. Scanning transmission X-ray microscopy of polymer nanoparticles: Probing morphology on sub-10 nm length scales. Abstr. Paper. Am. Chem. Soc. 2011;242:1. PubMed
Bartling S., Barke I., Sell K., Polei S., von Oeynhausen V., Meiwes-Broer K.H. Structure of AuSi nanoparticles on Si(111) from reflection high-energy electron diffraction and scanning tunneling microscopy. Eur. Phys. J. D. 2011;63:225–230.
Rim K.T., Eom D., Liu L., Stolyarova E., Raitano J.M., Chan S.W., Flytzani-Stephanopoulos M., Flynn G.W. Charging and chemical reactivity of gold nanoparticles and adatoms on the (111) surface of single-crystal magnetite: A scanning tunneling microscopy/spectroscopy study. J. Phys. Chem. C. 2009;113:10198–10205.
Zhou Y.H., Zhou J. Growth and sintering of Au-Pt nanoparticles on oxidized and reduced CeOx(111) thin films by scanning tunneling microscopy. J. Phys. Chem. Lett. 2010;1:609–615.
Park K.W., Dasika V.D., Nair H.P., Crook A.M., Bank S.R., Yu E.T. Conductivity and structure of ErAs nanoparticles embedded in GaAs pn junctions analyzed via conductive atomic force microscopy. Appl. Phys. Lett. 2012;100:1–6.
Romanchenko A.S., Mikhlin Y.L., Makhova L.V. Investigation of gold nanoparticles immobilized on the surface of pyrite by scanning probe microscopy, scanning tunneling spectroscopy, and X-ray photoelectron spectroscopy. Glass Phys. Chem. 2007;33:417–421.
Silva-Pinto E., Gomes A.P., Pinheiro C.B., Ladeira L.O., Pimenta M.A., Neves B.R.A. Controlled growth and positioning of metal nanoparticles via scanning probe microscopy. Langmuir. 2009;25:3356–3358. PubMed
Vakarelski I.U., Brown S.C., Moudgil B.M., Higashitani K. Nanoparticle-terminated scanning probe microscopy tips and surface samples. Adv. Powder Technol. 2007;18:605–614.
Hubert C., Amrani H., Khan M.A., Vocanson F., Destouches N. Electrical growth of metallic nanoparticles in mesoporous silica films using atomic force microscopy. Appl. Phys. Lett. 2012;100:1–6.
Kent R.D., Vikesland P.J. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ. Sci. Technol. 2012;46:6977–6984. PubMed
Onochi Y., Nakamura M., Hoshi N. Atomic force microscopy of the dissolution of cubic and tetrahedral Pt nanoparticles in electrochemical environments. J. Phys. Chem. C. 2012;116:15134–15140.
Roshanak G.Z., Rahele J., Zahra S., Sarmad N.M., Masoud S.M., Mehdi B.M.M., Mohammad M.A. Phase characterization of TiO2 nanoparticles by transmission electron microscopy (TEM) Clin. Biochem. 2012;44:S215–S216.
Chang L.Y., Lazar S., Baranova E.A., Bock C., Botton G.A. Quantitative characterisation of surface defects and composition on PtRu nanoparticles using aberration-corrected TEM/STEM. Microsc. Microanal. 2009;15:1416–1417.
Shibata M., Shklyaev A.A., Ichikawa M. Observation and nucleation control of Ge nanoislands on Si(111) surfaces using scanning reflection electron microscopy. J. Electron Microsc. 2000;49:217–223. PubMed
Zhang R.Y., Wei Y., Nagahara L.A., Amlani I., Tsui R.K. The contrast mechanism in low voltage scanning electron microscopy of single-walled carbon nanotubes. Nanotechnology. 2006;17:272–276.
Roberts W.S., Lonsdale D.J., Griffiths J., Higson S.P.J. Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens. Bioelectron. 2007;23:301–318. PubMed
Torisawa Y.S., Kaya T., Takii Y., Oyamatsu D., Nishizawa M., Matsue T. Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Anal. Chem. 2003;75:2154–2158. PubMed
Lacina K., Skladal P., Nagy G. The scanning electrochemical microscopy. Chem. Listy. 2012;106:253–263.
Edwards M.A., Martin S., Whitworth A.L., Macpherson J.V., Unwin P.R. Scanning electrochemical microscopy: Principles and applications to biophysical systems. Physiol. Meas. 2006;27:R63–R108. PubMed
Liu B., Cheng W., Rotenberg S.A., Mirkin M.V. Scanning electrochemical microscopy of living cells—Part 2. Imaging redox and acid/basic reactivities. J. Electroanal. Chem. 2001;500:590–597.
Liebetrau J.M., Miller H.M., Baur J.E. Scanning electrochemical microscopy of model neurons: Imaging and real-time detection of morphological changes. Anal. Chem. 2003;75:563–571. PubMed
Hahn D.W., Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community. Appl. Spectrosc. 2010;64:335A–366A. PubMed
Galiova M., Kaiser J., Novotny K., Novotny J., Vaculovic T., Liska M., Malina R., Stejskal K., Adam V., Kizek R. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Appl. Phys. A Mater. Sci. Process. 2008;93:917–922.
Hahn D.W., Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012;66:347–419. PubMed
Porizka P., Prochazka D., Pilat z., Krajcarova L., Kaiser J., Malina R., Novotny J., Zemanek P., Jezek J., Sery M., et al. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectroc. Acta Pt. B Atom. Spectr. 2012;74–75:169–176.
Vitkova G., Novotny K., Prokes L., Hrdlicka A., Kaiser J., Novotny J., Malina R., Prochazka D. Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks. Spectroc. Acta Pt. B Atom. Spectr. 2012;73:1–6.
Babushok V.I., DeLucia F.C., Gottfried J.L., Munson C.A., Miziolek A.W. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement. Spectroc. Acta Pt. B Atom. Spectr. 2006;61:999–1014.
De Giacomo A., Dell'Aglio M., Bruno D., Gaudiuso R., De Pascale O. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples. Spectroc. Acta Pt. B Atom. Spectr. 2008;63:805–816.
Uebbing J., Brust J., Sdorra W., Leis F., Niemax K. Reheating of a laser-produced plasma by a 2nd pulse laser. Appl. Spectrosc. 1991;45:1419–1423.
Mowery M.D., Sing R., Kirsch J., Razaghi A., Bechard S., Reed R.A. Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy. J. Pharm. Biomed. Anal. 2002;28:935–943. PubMed
St-Onge L., Kwong E., Sabsabi M., Vadas E.B. Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectroc. Acta Pt. B-Atom. Spectr. 2002;57:1131–1140.
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer. 2005;5:161–171. PubMed
Cho K.J., Wang X., Nie S.M., Chen Z., Shin D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008;14:1310–1316. PubMed
Mishra B., Patel B.B., Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed.-Nanotechnol. Biol. Med. 2010;6:9–24. PubMed
Peer D., Karp J.M., Hong S., FaroKhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. PubMed
Zhang L.F., Chan J.M., Gu F.X., Rhee J.W., Wang A.Z., Radovic-Moreno A.F., Alexis F., Langer R., Farokhzad O.C. Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano. 2008;2:1696–1702. PubMed PMC
Kwon G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carr. Syst. 2003;20:357–403. PubMed
Walko C.M., McLeod H. Pharmacogenomic progress in individualized dosing of key drugs for cancer patients. Nat. Clin. Pract. Oncol. 2009;6:153–162. PubMed
Slingerland M., Guchelaar H.J., Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov. Today. 2012;17:160–166. PubMed
Puri A., Loomis K., Smith B., Lee J.H., Yavlovich A., Heldman E., Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carr. Syst. 2009;26:523–580. PubMed PMC
Patra C.R., Bhattacharya R., Mukhopadhyay D., Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 2010;62:346–361. PubMed PMC
Acharya S., Dilnawaz F., Sahoo S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30:5737–5750. PubMed
Misra R., Acharya S., Sahoo S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today. 2010;15:842–850. PubMed
Wang J.Q., Sui M.H., Fan W.M. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab. 2010;11:129–141. PubMed
Adiseshaiah P.P., Hall J.B., McNeil S.E. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:99–112. PubMed
Jain K.K. Nanobiotechnology-based cancer diagnosis preface. Clin. Lab. Med. 2012;32:IX–X. PubMed
Youns M., Hoheisel J.D., Efferth T. Therapeutic and diagnostic applications of nanoparticles. Curr. Drug Targets. 2011;12:357–365. PubMed
Chatterjee D.K., Fong L.S., Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008;60:1627–1637. PubMed
Samia A.C.S., Chen X.B., Burda C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 2003;125:15736–15737. PubMed
Morosini V., Bastogne T., Frochot C., Schneider R., Francois A., Guillemin F., Barberi-Heyo M. Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer. Photochem. Photobiol. Sci. 2011;10:842–851. PubMed
Kam N.W.S., O'Connell M., Wisdom J.A., Dai H.J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA. 2005;102:11600–11605. PubMed PMC
Madani S.Y., Naderi N., Dissanayake O., Tan A., Seifalian A.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomed. 2011;6:2963–2979. PubMed PMC
Carter J.D., Cheng N.N., Qu Y.Q., Suarez G.D., Guo T. Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B. 2007;111:11622–11625. PubMed
Juzenas P., Chen W., Sun Y.P., Coelho M.A.N., Generalov R., Generalova N., Christensen I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 2008;60:1600–1614. PubMed PMC
Zheng Y., Hunting D.J., Ayotte P., Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat. Res. 2008;169:19–27. PubMed
Herold D.M., Das I.J., Stobbe C.C., Iyer R.V., Chapman J.D. Gold microspheres: A selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol. 2000;76:1357–1364. PubMed
Huang P., Bao L., Zhang C.L., Lin J., Luo T., Yang D.P., He M., Li Z.M., Gao G., Gao B., et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9796–9809. PubMed
Chen F., Huang P., Zhu Y.J., Wu J., Zhang C.L., Cui D.X. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 2011;32:9031–9039. PubMed
Pan B.F., Cui D.X., Sheng Y., Ozkan C.G., Gao F., He R., Li Q., Xu P., Huang T. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67:8156–8163. PubMed
Vilarino-Varela M.J., Taylor A., Rockall A.G., Reznek R.H., Powell M.E.B. A verification study of proposed pelvic lymph node localisation guidelines using nanoparticle-enhanced magnetic resonance imaging. Radiother. Oncol. 2008;89:192–196. PubMed
Singhal S., Nie S.M., Wang M.D. Nanotechnology applications in surgical oncology. Ann. Rev. Med. 2010;61:359–373. PubMed PMC
Advanced nanotechnologies in avian influenza: Current status and future trends - A review
Formation of DNA adducts by ellipticine and its micellar form in rats - a comparative study