Preparation and properties of various magnetic nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
22574017
PubMed Central
PMC3348843
DOI
10.3390/s90402352
PII: s90402352
Knihovny.cz E-zdroje
- Klíčová slova
- Magnetic nanoparticles, gadolinium nanoparticles, iron oxide, silica coating,
- Publikační typ
- časopisecké články MeSH
The fabrications of iron oxides nanoparticles using co-precipitation and gadolinium nanoparticles using water in oil microemulsion method are reported in this paper. Results of detailed phase analysis by XRD and Mössbauer spectroscopy are discussed. XRD analysis revealed that the crystallite size (mean coherence length) of iron oxides (mainly γ-Fe(2)O(3)) in the Fe(2)O(3) sample was 30 nm, while in Fe(2)O(3)/SiO(2) where the ε-Fe(2)O(3) phase dominated it was only 14 nm. Gd/SiO(2) nanoparticles were found to be completely amorphous, according to XRD. The samples showed various shapes of hysteresis loops and different coercivities. Differences in the saturation magnetization (MS) correspond to the chemical and phase composition of the sample materials. However, we observed that MS was not reached in the case of Fe(2)O(3)/SiO(2), while for Gd/SiO(2) sample the MS value was extremely low. Therefore we conclude that only unmodified Fe(2)O(3) nanoparticles are suitable for intended biosensing application in vitro (e.g. detection of viral nucleic acids) and the phase purification of this sample for this purpose is not necessary.
Zobrazit více v PubMed
Arruebo M., Fernandez-Pacheco R., Ibarra M.R., Santamaria J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32.
Lu A.H., Salabas E.L., Schuth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem.-Int. Edit. 2007;46:1222–1244. PubMed
Kumar C.S.S.R. Biofunctionalization of Nanomaterials. Vol. 1. Wiley-VCH; Weinheim: 2005. pp. 72–98.
Hutten A., Sudfeld D., Ennen I., Reiss G., Hachmann W., Heinzmann U., Wojczykowski K., Jutzi P., Saikaly W., Thomas G. New magnetic nanoparticles for biotechnology. J. Biotechnol. 2004;112:47–63. PubMed
Tucek J., Zboril R., Petridis D. Maghemite nanoparticles by view of Mossbauer spectroscopy. J. Nanosci. Nanotechnol. 2006;6:926–947. PubMed
Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. PubMed
Xie J., Xu C.J., Xu Z.C., Hou Y.L., Young K.L., Wang S.X., Pourmond N., Sun S.H. Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chem. Mat. 2006;18:5401–5403. PubMed PMC
Tang D.P., Yuan R., Chai Y.Q. Direct electrochemical immunoassay based on immobilization of protein-magnetic nanoparticle composites on to magnetic electrode surfaces by sterically enhanced magnetic field force. Biotechnol. Lett. 2006;28:559–565. PubMed
Zboril R., Mashlan M., Petridis D. Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chem. Mat. 2002;14:969–982.
Ortega D., Garitaonandia J.S., Barrera-Solano C., Ramirez-Del-Solar M., Blanco E., Dominguez M. gamma-Fe2O3/SiO2 nanocomposites for magneto-optical applications: Nanostructural and magnetic properties. J. Non-Cryst. Solids. 2006;352:2801–2810.
Batlle X., Labarta A. Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D-Appl. Phys. 2002;35:R15–R42.
Morales M.A., Finotelli P.V., Coaquira J.A.H., Rocha-Leao M.H.M., Diaz-Aguila C., Baggio-Saitovitch E.M., Rossi A.M. In situ synthesis and magnetic studies of iron oxide nanoparticles in calcium-alginate matrix for biomedical applications. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2008;28:253–257.
Santra S., Tapec R., Theodoropoulou N., Dobson J., Hebard A., Tan W.H. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir. 2001;17:2900–2906.
De Palma R., Trekker J., Peeters S., Van Bael M.J., Bonroy K., Wirix-Speetjens R., Reekmans G., Laureyn W., Borghs G., Maes G. Surface modification of gamma-Fe2O3@ SiO2 magnetic nanoparticles for the controlled interaction with biomolecules. J. Nanosci. Nanotechnol. 2007;7:4626–4641. PubMed
Iida H., Takayanagi K., Nakanishi T., Kume A., Muramatsu K., Kiyohara Y., Akiyama Y., Osaka T. Preparation of Human Immune Effector T Cells Containing Iron-Oxide Nanoparticles. Biotechnol. Bioeng. 2008;101:1123–1128. PubMed
Khalil K.M.S., Mahmoud H.A., Ali T.T. Direct formation of thermally stabilized amorphous mesoporous Fe2O3/SiO2 nanocomposites by hydrolysis of aqueous iron (III) nitrate in sols of spherical silica particles. Langmuir. 2008;24:1037–1043. PubMed
Srinivasan B., Huang X.F. Functionalization of magnetic nanoparticles with organic molecules: Loading level determination and evaluation of linker length effect on immobilization. Chirality. 2008;20:265–277. PubMed
Cannas C., Concas G., Gatteschi D., Musinu A., Piccaluga G., Sangregorio C. How to tailor maghemite particle size in gamma-Fe2O3-SiO2 nanocomposites. J. Mater. Chem. 2002;12:3141–3146.
Ichiyanagi Y., Moritake S., Taira S., Setou M. Functional magnetic nanoparticles for medical application. J. Magn. Magn. Mater. 2007;310:2877–2879.
Fabrik I., Krizkova S., Huska D., Adam V., Hubalek J., Trnkova L., Eckschlager T., Kukacka J., Prusa R., Kizek R. Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanalysis. 2008;20:1521–1532.
Liu H.L., Sonn C.H., Wu J.H., Lee K.M., Kim Y.K. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4(+) lymphocytes. Biomaterials. 2008;29:4003–4011. PubMed
Gerion D., Herberg J., Bok R., Gjersing E., Ramon E., Maxwell R., Kurhanewicz J., Budinger T.F., Gray J.W., Shuman M.A., Chen F.F. Paramagnetic silica-coated nanocrystals as an advanced MRI contrast agent. J. Phys. Chem. C. 2007;111:12542–12551.
Ichiyanagi Y., Kimishima Y. Structural, magnetic and thermal characterizations of Fe2O3 nanoparticle systems. J. Therm. Anal. 2002;69:919–923.
Santra S., Bagwe R.P., Dutta D., Stanley J.T., Walter G.A., Tan W., Moudgil B.M., Mericle R.A. Synthesis and characterization of fluorescent radio-opaque and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv. Mater. 2005;17:2165–2169.
Ichiyanagi Y., Uozumi T., Kimishima Y. Magnetic properties of Fe2O3 nanoparticles. Trans. Mat. Res. Soc. Jpn. 2001;26:1097–1100.
Ding Y., Morber J.R., Snyder R.L., Wang Z.L. Nanowire structural evolution from Fe3O4 to epsilon-Fe2O3. Adv. Funct. Mater. 2007;17:1172–1178.
Long G.J., Grandjean F. Mössbauer Spectroscopy Applied to Magnetism and Materials Science. Vol. 1. Plenum Press; New York: 1993. pp. 115–159.
Tronc E., Chaneac C., Jolivet J.P. Structural and magnetic characterization of epsilon-Fe2O3. J. Solid State Chem. 1998;139:93–104.
Machala L., Zboril R., Gedanken A. Amorphous iron(III) oxide - A review. J. Phys. Chem. B. 2007;111:4003–4018. PubMed
Popovici M., Gich M., Niznansky D., Roig A., Savii C., Casas L., Molins E., Zaveta K., Enache C., Sort J., de Brion S., Chouteau G., Nogues J. Optimized synthesis of the elusive epsilon-Fe2O3 phase via sol-gel chemistry. Chem. Mat. 2004;16:5542–5548.
Tartaj P., Serna C.J. Microemulsion-assisted synthesis of tunable superparamagnetic composites. Chem. Mat. 2002;14:4396–4402.
Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH; New York: 1996. p. 117.
Wohlfarth E.P. Ferromagnetic Materials. Vol. 2. North-Holland; Amsterdam: 1980. p. 442.
Wohlfarth E.P. Ferromagnetic Materials. Vol. 2. North-Holland; Amsterdam: 1980. p. 512.
O’Shea M.J., Perera P. Influence of nanostructure (layers and particles) on the magnetism of rare-earth materials. J. Appl. Phys. 1999;85:4322–4324.
Modern micro and nanoparticle-based imaging techniques